
4. Monte Carlo Methods

In many data analysis problems it is useful to create ‘mock’ 

datasets, in order to test models and explore possible systematic 

errors.

e.g. Mock galaxy catalogues:

We need methods for

generating random variables –

i.e. samples of numbers which 

behave as if they are drawn

from some particular pdf (e.g.

uniform, Gaussian, Poisson etc).

We call these Monte Carlo methods
From Cole et al. (1998)

4.1 Uniform random numbers

Generating uniform random numbers, drawn 

from the pdf U[0,1], is fairly easy.  Any scientific 

Calculator will have a RAN function…

Better examples of U[0,1] random 

number generators can be 

found in Numerical Recipes.

In what sense are they better?…

http://www.numerical-recipes.com/
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Algorithms only generate pseudo-random

numbers:   very

x

long (deterministic) sequences of numbers which are 

approximately random  (i.e. no discernible pattern).

The better the RNG, the better it approximates  U[0,1] 



We can test pseudo-random numbers for randomness in several ways:

(a)   Histogram of sampled values.

We can use hypothesis tests to see if the sample is consistent with the 
pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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Assume the bin number counts are subject
to Poisson fluctuations, so that pred2
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Note:  no. of degrees of freedom = nbin – 1

since we know the total sample size. 

(4.1)

(b)   Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the

phase portraits – scatterplots of the ith value against the (i+1)th value etc.
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(b)   Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the

phase portraits – scatterplots of the ith value against the (i+1)th value etc.

We can compute the

Auto-correlation function

j is known as the Lag

If the sequence is uniformly random,  we expect
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forj) = 1 j = 0

otherwisej) = 0

The procedure is similar to changing

variables in integration.

Let               be monotonic

Then
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4.2 Variable transformations

Generating random numbers from other 

pdfs can be done by transforming random 

numbers drawn from simpler pdfs. 

Suppose, e.g.
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We can extend the expression given in eq. (4.4) to the case where

is not monotonic, by calculating

so that
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Example 1

Suppose we have
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Example 2

Numerical recipes provides a program to turn into

Suppose we want

We define                 so that

Now

so
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Normal pdf with mean zero and standard deviation unity
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Variable transformation formula also the basis for error propagation 
formulae we use in the lab.   See example sheet 3 for more on this.

Suppose we can compute the CDF of

some desired random variable

4.3     Probability integral transform

One particular variable transformation merits special attention.



1) Sample a random variable

2) Compute         such that                    i.e.

3) Then     i.e.        is drawn from the pdf 

corresponding to the cdf
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Suppose we want to sample from 
some pdf     and we know that )(1 xp
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4.4     Rejection sampling
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(Suppose we have an ‘easy’ way to do this)

Set of accepted values 
are a sample from 
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Method can be very slow if the shaded region is too large.

Ideally we want to find a pdf             that is:    (a)  easy to sample from

(b) close to

4.4     Rejection sampling
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4.5     Markov Chain Monte Carlo

This is a very powerful, new  (at least in astronomy!)  method for sampling 

from pdfs.  (These can be complicated and/or of high dimension).

MCMC widely used e.g. in cosmology to determine ‘maximum likelihood’ 

model to CMBR data.
Angular power spectrum of CMBR temperature fluctuations

ML cosmological model, 

depending on 7 different

parameters.

Consider a 2-D example  (e.g. bivariate normal distribution);

Likelihood function depends on parameters a and b.

Suppose we are trying to find the

maximum of

1) Start off at some randomly

chosen value

2) Compute                and gradient

3) Move in direction of steepest

+ve gradient – i.e. is

increasing fastest

4) Repeat from step 2 until     converges on maximum of likelihood 
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OK for finding maximum, but not for generating a sample from

or for determining errors on the the ML parameter estimates. 
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MCMC provides a simple Metropolis algorithm for

generating random samples of points from L(a,b)

a

Slice through

L(a,b)

b

1. Sample random initial point

2. Centre a new pdf, Q,  called the

proposal density,  on

3. Sample tentative new point

from Q

4. Compute

P1 =  ( a1 , b1 )
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5. If R > 1 this means        is uphill from      . 

We accept as the next point in our chain,  i.e.

6. If R < 1 this means        is downhill from      .

In this case we may reject        as our next point.

In fact,  we accept with probability R . 

P’ P1

P’ P2 = P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number x  ~ U[0,1]

(b)  If x < R then accept         and set

(c)  If x > R then reject          and set

P’ P2 = P’

P’ P2 = P1

Acceptance probability depends only on the previous point  - Markov Chain



So the Metropolis Algorithm generally  (but not always)  moves uphill, 

towards the peak of the Likelihood Function.

Remarkable facts

Sequence of points

represents a sample from the LF

Sequence for each coordinate, e.g.

samples the marginalised likelihood of

We can make a histogram of

and use it to compute the mean and variance of         ( i.e.

to attach an error bar to      )
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Why is this so useful?…

Suppose our LF was a 1-D Gaussian.  We could estimate the mean and 

variance quite well from a histogram of e.g. 1000 samples.

But what if our problem is,

e.g. 7 dimensional?

‘Normal’ sampling would

need  (1000)7 samples!

MCMC provides a short-cut.

To compute a new point in our

Markov Chain we need to compute

the LF.   But the computational cost does not grow so dramatically as we 

increase the number of dimensions of our problem.

This lets us tackle problems that would be impossible by ‘normal’ sampling.
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