
3.  Model Fitting

In this section we apply the statistical tools introduced in Section 2 to 

explore:

how to estimate model parameters

how to test the goodness of fit of models.

We will consider:

3.2 The method of least squares

3.3 The principle of maximum likelihood

3.4 Least squares as maximum likelihood estimators

3.5 Chi-squared goodness of fit tests

3.6   More general hypothesis testing

3.7   Computational methods for minimising / maximising functions 

But before we do,  we first introduce an important pdf: 

the bivariate normal distribution

3.1  The bivariate normal distribution
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In fact, for any two variables x and y,  we define
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Isoprobability contours for 

the bivariate normal pdf
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3.2 The method of Least Squares

o ‘workhorse’ method for fitting lines and curves to data 

in the physical sciences

o method often encountered (as a ‘black box’?) in 

elementary courses

o useful demonstration of underlying statistical 

principles

o simple illustration of fitting straight line to  (x,y) data



Ordinary Linear Least Squares
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We can show that          i.e. LS estimators are unbiased.
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Choosing the          so that                  we can make and         independent. 
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Weighted Linear Least Squares

( Common in astronomy )

Define

Again we find Least Squares estimators of a and b satisfying
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Solving, we find
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Also
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Extensions and Generalisations

o Errors on both variables?

Need to modify  merit function  accordingly.

Renders equations non-linear ;  no simple analytic solution!

(3.22)

Not examinable, but see e.g. 

Numerical Recipes 15.3



Extensions and Generalisations

o General linear models?

e.g.

We can write

Can formulate as a matrix equation and solve for parameters
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Matrix approach to Least Squares

Define
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Model: Vector of model 

parameters

Xay (3.25)

Vector of 

errors

Vector of 

observations
Design matrix of 

model basis functions
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pdf with mean zero and variance
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Matrix approach to Least Squares:  weighting by errors

Define
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Weighted Model: Vector of model 

parameters

eAab (3.26)
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We solve for the parameter vector          that minimises

This has solution
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Extensions and Generalisations

o Non-linear models?

Suppose

Then

But no simple analytic method to minimise sum of squares
( e.g. no analytic solutions to                    ) 

Model parameters

(3.29)
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3.3    The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L  = probability of obtaining the observed data, given the value of 
the parameter

Now define likelihood function:  (infinite) family of curves 

generated by regarding L as

a function of    , for data fixed.

Principle of Maximum Likelihood

A good estimator of      maximises L -

i.e. and0
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We set the parameter equal to 
the value that makes the actual
data sample we did observe –
out of all the possible random 
samples we could have observed
– the most likely. 



Likelihood function has same definition in Bayesian probability theory, but subtle difference in
meaning and interpretation – no need to invoke idea of (infinite) ensemble of different samples.

Aside:

A good estimator of      maximises L -

i.e. and

Principle of Maximum Likelihood
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Principle of Maximum Likelihood

A good estimator of      maximises L -
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Principle of Maximum Likelihood

A good estimator of      maximises L -
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3.4    Least squares as maximum likelihood estimators

To see the maximum likelihood method in action,  let’s consider again 

weighted least squares for the simple model

Let’s assume the pdf is a Gaussian

Likelihood

(note: L is a product of 1-D Gaussians because we are assuming the    are independent)

(From Section 3.3)
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Substitute

and the ML estimators of      and   satisfy                 and

But maximising        is equivalent to maximising

Here

So in this case maximising L is exactly equivalent to minimising the sum of squares.

i.e. for Gaussian, independent errors,  ML and weighted LS estimators are identical.
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This is exactly the same 

sum of squares we 

defined in Section 3.3



3.5  Chi-squared goodness of fit test

In the previous 3 sections we have discussed how to estimate 

parameters of an underlying pdf model from sample data.

We now consider the related question:

How good is our pdf model in the first place?

We now illustrate the frequentist approach to this question using the 

chi-squared goodness of fit test, for the (very common) case where 

the model pdf is a Gaussian.

We take an example from Gregory (Chapter 7)

(book focusses mainly on Bayesian probability, but

is very good on frequentist approach too)

Model:  radio emission from a galaxy is constant in time.

Assume residuals are iid, drawn from  N(0, )



Goodness-of-fit Test:   the basic ideas

From Gregory, pg. 164

(3.33)
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n = 15 data points, but = 14 degrees of 

freedom, because statistic involves the 

sample mean and not the true mean.

We subtract one d.o.f. to account for this.
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If the null hypothesis is true, how probable is it that we

would measure as large, or larger, a value of     ?

(3.35)

If the null hypothesis were true,  how probable is it that we 

would measure as large, or larger, a value of     ?

This is an important quantity, referred to as the P-value

What precisely does the P-value mean?

If we obtain a very small P-value  (e.g. a few percent?)   we can interpret this as 

providing little support for the null hypothesis, which we may then choose to reject.

(Ultimately this choice is subjective, but       may provide objective ammunition for doing so)
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“If the galaxy flux density really is constant,  and we repeatedly obtained sets 

of 15 measurements under the same conditions,  then only 2% of the

values derived from these sets would be expected to be greater than our one 

actual measured value of 26.76”
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From Gregory, pg. 165
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Nevertheless,  P-value based frequentist hypothesis testing remains very 

common in the literature:

Type of problem test References

Line and curve NR: 15.1-15.6

goodness-of-fit

Difference of means Student’s t NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6

Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6

coefficient

Discrete RVs test / NR: 14.4

contingency table

test

See also supplementary handout

3.7  Minimising and Maximising Functions

Least squares and maximum likelihood involve, in practice, a lot of

minimising and maximising of functions – i.e. solving equations of the form:

In general these equations may not have an analytic solution, especially if 

our pdf is a function of two or more parameters.

Some computational strategies for minimising/maximising functions:

0iL (3.37)

1. Solve      where         (may be easier to solve)

2. Perform grid search over     , evaluating          at each point

3. Use  gradient ascent / descent for increased efficiency
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2. Perform grid search over     , evaluating         at each point)(L

1-D example

Regularly spaced grid points.

No need to compute
derivatives of likelihood

But we need very fine grid 
spacing to obtain accurate 
estimate of the maximum

This is computationally very
costly, particularly if we need
to search a multi-dimensional
parameter space.
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3. Method of Steepest Ascent / Descent

Make jumps in direction where gradient of          is changing most rapidly.

Need to estimate derivatives of likelihood, i.e. (See Num. Rec. Chap. 10)
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