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Course Outline

1. Introduction < Why data analysis?

2. A Basic Statistical Toolbox

° QOverview of types of astronomical data:

Photon counts; images, spectra, time series,
Fourier components.

Sources of error: statistical versus systematic
What is probability?
Probability distributions and their moments

Examples: Poisson, Uniform, Gaussian

Bayes' Theorem and Bayesian inference
v

(see also M-level course on Statistical Astronomy)
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Course Outline

3. Model Fitting - Least squares and maximum likelihood
° Chi-squared and goodness of fit

° Computational methods for finding
maxima an minima of functions.

4. Monte Carlo Methods

°  Uniform random number generators
°  Transformation method

o  Probability integral transform

° Rejection method
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Course Outline

5. Fourier Methods

°  Fourier transforms: definitions and examples
° Discrete and fast Fourier transforms

o Relationship between real space and Fourier
space

°  Sampling of Fourier components

6. Data Acquisition

o  Sampling theorems: Nyquist theorem and its
applications

°  Analogue to digital conversion

o Data compression for space-based data
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Course Outline

7. Time Series Analysis
°  Beating and aliasing
° Period fitting

e  Wavelets and other basis functions

8. Inverse Methods

° TIll-posedness and instability
°  Smoothing and reqularisation

e  Deconvolution algorithms
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Recommended Books?

A BAYESIA!

TUTOR

Astrophysical
Techniques

(ToP publishing)
C.R. Kitchin

ISBN: 0750309466

Practical Statistics
for Astronomers

(Cambridge Univ Press)
J.V. Wall & C.R. Jenkins

ISBN: 0521456169

Data Analysis:
A Bayesian Tutorial

(Oxford Univ Press)
D.S. Sivia

ISBN: 0198568312

| ¥ james

A Student's Guide to

With Apg

See also free book by
Praesenjit Saha (London).

A FRACTICAL GUIDE TO

Data Analysis for
Physical Sciener Students

Can be downloaded via
Moodle site

MNUMERICAL
RHECIPES in C

Lowis Lyons

http://www.numerical-recipes.com/

No single textbook suitable, but
several may be worth a look:

A Student’s Guide to
Fourier Transforms

(Cambridge Univ Press)
J.F. James

ISBN: 0521004284

A Practical Guide to
Data Analysis for the
Physical Sciences

(Oxford Univ Press)
Louis Lyons

ISBN: 0521424631

Astronomy Methods

(Cambridge Univ Press)
Hale Bradt

ISBN: 052136440X



http://www.library.cornell.edu/nr/cbookcpdf.html

Why a course on astronomical data analysis?...

Mark Twain Benjamin Disraeli

There are three types of lies: lies, damned lies and statistics




Why a course on astronomical data analysis?...

Data analysis methods are often

regarded as simple recipes... NUMERICAL
RECIPES in C
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Why a course on astronomical data analysis?...

Data analysis methods are often
regarded as simple recipes...

..but in astronomy, sometimes
the recipes don't workl!l

o Very weak signals
o Correlated ‘residuals’
o Incorrect assumptions

]

SYSTEMATIC ERRORS




Why a course on astronomical data analysis?...

Many areas of astronomy are Remote sensing

We can't mply ask
"What happens if we

change this?"

Modern - " Big
universe > 4 i bang

B

1.0 0f7- 04
Age of the universe (billions of years)



Types of Astronomical Data

Modern observational astrophysics is multi-wavelength across the E-M spectrum
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Types of Astronomical Data: CCD imaging

From near infra-red (1~100um ) through to UV (1~10nm) wavelengths,
astronomical data arrives as photons, which trigger a CCD response.

A CCD is a semiconductor array of 77
. _ .y . . _ . fﬁ
light-sensitive pixels - typically L

LN A A A A A A A
about 20 um across. i NN
VIV aa
Image: direct 'map’ of where photons f,fr Kﬁf {j{; f,f& Kﬁ’; /{; /f r,“’; f,"j ,/’f /fr
arrive LSS ST S S
f LSS S
A S S S S

Arrays of 10’ pixels standard.

'State of the Art' - mosaics of CCDs, around 10° pixels in total

o Electron released when photon

Bias voltage ~ +10V . .
J strikes semiconductor

|
;"% o Bias voltage draws electron into potential

| [lf_l ).—l
_TI_ \_TI_ // —TI_ Earth (OV) well; stored there during exposure

Potential well




Types of Astronomical Data: CCD imaging

Hence, a great deal of astronomical data consists of counts of photons.
These obey Poisson statistics.

Recap of ideas from A2 Observational Astrophysics

o The number of photons arriving at our detector from a given
source will fluctuate.

o We can treat the arrival rate of photons statistically,
which (roughly speaking) means that we can calculate the
average number of photons which we expect to arrive

(1781 — 1840) ina given time interval.

o We make certain assumptions (axioms):

1.  Photons arrive independently in time

2. Average photon arrival rate is a constant

If our observed photons satisfy these axioms, then they are
said to follow a Poisson distribution (See also section 2)



Suppose the (assumed constant) mean photon
arrival rate is R photons per second.

If we observe for an exposure time T seconds,
then we expect to receive Rt photons in that time.

We refer to this as the expectation value of the

number of photons, written as
E(N)=(N)=Rz

If we made a series of observations, each of time 7 seconds, we
wouldn't expect to receive <N> photons every time, but the
average number of counts should equal <N> — Rt

(in fact this is how we can estimate the value of the rate R )



Given the two Poisson axioms, we can show (see Section 2)
that the probability of receiving N photons in tfime T
IS given by




Poisson statistics

Rz=05
p(N) /
° Rr=1.0 N —Rr -
Rz) e
| Pp(N) = ( ?\“ -
Rz=5.0

\

As R 7T increases, the shape of the Poisson distribution becomes
more symmetrical

(it tends to a normal, or Gaussian, distribution - see Section 2)



Poisson statistics

We can define the variance of N , which is a measure of the
spread in the Poisson distribution:

var(N)=o’ = E{[N - E(N)]z}

For a Poisson distribution, we will show in Section 2 that the variance
of N is

var(N) =R~

and the standard deviation of N is O = Rt



In practice we usually only observe for one period of (say) 7
seconds, during which time we receive (say) a count of N obs
photons.

We estimate the arrival rate as R = "obs
i T
The hat symbol here denotes that /

we are defining an estimator of R

We take Nobs as our 'best’ estimate for <N> with error ./ A\

i.e we quote our experimental result for the number count of
photons in time interval T as

N

obs

obs T




In the optical window it is still commonplace to convert photon counts to
apparent magnitudes.

m, —m, =-2.5log,, %
2

Usually we measure magnitudes through a filter, which 1.0 Diagram adapted
s : [ rom Carroll &
ransmits only over a small range of frequenci - Jrom
transmits only over a small range of frequencies [\ Ostlie, Fig 3.11
08 U B V)

The Johnson System is a set of standard filters, from the
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The transmission function, 7, defines 0.0 \ es—
the fraction of light transmitted by the 300 400 300 600 700
filter as a function of frequency (or Wavelength (nm)
wavelength)

o0
For each Johnson filter, 7" peaks at
some wavelength /4, , and has a Meprer = —2.510gy, IE, Terer (V) AV |+ Crpprer
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In the optical window it is still commonplace to convert photon counts to
apparent magnitudes.

__ Ny
m, —m, =-2.5log,, N
2
10 bolometric apparent magnitude : 7(v)=1 at all frequencies
g AL Example: UBV magnitudes
é 06 / Filter A, (nm) | AA (nm)
E 04 ars m; =U 365 68
02 my, =B 440 98
00 m, =V 550 89

Extracting accurate magnitudes (with uncertainties) requires:

o careful calibration of the CCD response function (see ADA II)



CCD imaging capability now extending into X-ray

e.g. ACIS on Chandra
CCD array with 0.5 arcsec resolution

Mosaic image of the Galactic Centre

. R 4 ;\‘ " e A - ;
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ACIS is an imaging spectrometer.

Across the E-M spectrum we use highly dispersed light to probe in
detail the frequency dependence of the incoming radation.

Light dispersed by a diffraction 3
grating .
‘é Continuum
Spectral Resolving Power £
A
R=——=Nn AV
AA /« \
Number of lines Order‘ ;;?;frfqr“ﬂon / frequency #

Vo
< Schematic diagram of an absorption line
CRIRES on VLT:

R~10°

Spectroscopy is crucial to much of astrophysics



From analysis of spectral lines we can learn about:-

Characteristic

from

1.

2.

Chemical elements

Chemical abundances

Bulk velocity (i.e. velocity
of atmosphere as a whole)

Temperature, pressure,
gravity

Spread of velocities

Magnetic and electric field

frequency v,

intensity

frequency v,

line width Av

line width Ay

‘fine structure' in lines
(e.g. Zeeman splitting)

See ADA II for much more on Aow we extract this information




In addition to direct imaging and imaging spectroscopy, much
astronomical data is collected or processed as Fourier components.

This is the case in radio astronomy and (interestingly) in
high energy astronomy

Key elements of a radio telescope
Antenna (e.g. dish or dipole - see AlY)

o chooses direction of observation
o collects radiation

o converts radiation to AC signal

Receiver (this is the ‘detector”)

o amplifies the signal (by a factor known as the gain)
o selects frequency and bandwidth (compare e.g. optical filters)

o processes and records signal

So the data consist of a Fourier decomposition of the signal.



In high energy astronomy the problem is how to focus highly energetic
photons.

One solution is to use a coded mask:
o Mask casts a 'shadow’ on the detector.

o As the mask moves or rotates, the
shadow pattern changes.

o Can use Fourier methods to
reconstruct, from changes in the Coded masklKlfTé-éanefAnlonitoIrl_instrument
shadow pattern, where on the sky on satetiite
the photons came from. (See ADA II)

Many examples of this technology now in orbit:

e.g. RHESSI - Ramaty High Energy Solar Spectroscopic Imager

SWIFT - satellite to observe GRBs in X-rays and UV/Optical

INTEGRAL - International Gamma Ray Astrophysics Laboratory



Our analysis of astronomical data (i.e. photon counts, magnitudes, spectra)
often involves looking for patterns in time:

Examples
o periodic variable stars (e.g. Cepheids, RR Lyraes, eclipsing binaries)

o extra-solar planets

o fransient events (e.g. GRBs, supernovae, gravitational wave sources?)

as measured

{m=s!
Mg -5 log(h/65)

Vead

-20 Calan/Tololo SNe Ia

. -20 0 20 40
Orbital Phase days

Type Ia supernova light curves

ESP velocity curves

ST o o5 s o o7 9T oe s How do we identify and measure

Phase periodicity or transient phenomena?...
Cepheid light curves

36




What do we do with all this astronomical data?

o Weuse it to tfest models, make inferences about parameters.

o We need good data analysis methods to make this process:

objective same data, same analysis method =  same results
quantitative our data analysis should yield ‘hard numbers’ + uncertainties
reliable not good if parameter estimates very sensitive to our

good if p y

assumptions, estimated uncertainties should be realistic

informative we want to constrain physically meaningful parameters,
our data analysis should help us understand "what is going on”

predictive. the results of our data analysis should help us to make

predictions with our models: i.e. future observations that
could be made to better test the models.

Some of these issues will be left to M-level Stats Astro course, but
it's worth keeping them in the back of our mind.



ACDM

Figure 3. A line up of
cosmological culprits

{2x 18 the big shot control-
ing the Universe. He’s go-
ing to make it blow up.
Qe p s would like to make
the Universe collapse but
can’'t compete with {25 . {23
just follows £2¢ pas around.
Like all dangerous crimi-

nals, one can never be sure
of €25, until he is behind

bars. The CMB police is
being beefed up. Hundreds
of heroic CMB observers
are now planning his cap-
ture.

From Lineweaver (1998)

Cosmology’s Most Wanted
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Q4
cosmological constant
energy of the vacuum

He never clumps
His evil plan is to
blow up the Universe

g)C DM

cold dark matter
He likes to clump but
has never been detected
directly

His evil plan is to make
the Universe collapse

Qp

normal baryonic matter
a pawn in the cosmic
game who just follows

CDM around. He thinks
he’s a complex life form
but is really just a bunch
of hydrogen




Hubble diagram of distant Type la supernovae
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