Department of Physics & Astronomy

Astronomy 2 Laboratory

Analysis of Cepheid Variables

Aim

To analyse observations of the apparent magnitude of Cepheid Variable Stars, in order to determine a Period-Luminosity Law. Two different statistical methods will be used in analysing the data.

Task List

· Extract the cepheid data for analysis, and import it into the appropriate Excel file.

· Analyse the period by power spectrum fitting first, noting the peaks showing period candidates.

· Investigate each peak by least squares fitting, determining the best-fit period and eliminating period aliases.

· Construct a period-luminosity law for the variable stars in the dataset, combining your estimates of the period and mean apparent magnitude with the distance and reddening information provided for each Cepheid.

Summary

Cepheid variable stars are pulsating supergiants which are very useful as distance indicators.  This is because there exists a fundamental relationship between their period of pulsation and their intrinsic luminosity, which allows the absolute magnitude of a distant Cepheid to be determined simply by measuring its period.  

The aim of this experiment is to verify the following period-luminosity law:
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where 
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 is the star's average luminosity, and P is the period, or, in terms of mean absolute visual magnitude, 
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The two techniques for measuring the period in this experiment are complementary in that one (power spectrum fitting) gives a simple method for finding likely values and is good for searching over a wide range of possible periods, but can give spurious values (known as aliases) if the data are poorly distributed with respect to time. The second technique (least squares fitting) is less suitable for searching for likely values – since to implement it numerically requires as a starting point a good approximation to the true period.  However, it provides a measure of the quality of the solution (known as the goodness of fit) and thus permits the elimination of period aliases.   It also provides additional information such as the fitted mean apparent magnitude.
Method
Data on a sample of 18 galactic Cepheids are given in separate files on the PCs in the Observatory cluster.  These files are in a directory named A2_Cepheids, with names of the format XX_XXX_p.xls (e.g. AN_Aur_p.xls).

Each data file is an excel file that contains 4 columns: the time of observation (denoted by HJD for Julian Date), the visual apparent magnitude (V) and the U-B and B-V colours at a series of different epochs. In this experiment you will require to use only the first two columns of data.

Step 1: Power Spectrum Fitting

This part of the experiment is carried out using the program Cepheid_power.xls; this program analyses the power spectrum of the time behaviour, which will identify candidates for the period of the variation.  The power spectrum is basically a function that measures how closely the time variations of the Cepheid data can be approximated as a sum of sine and cosine terms – i.e. as a Fourier series.  (Some further theoretical background on power spectrum analysis is provided in the Appendix, which you should read first before beginning to analyse the data. It is not necessary to reproduce this background material in detail in your lab record, but you should include a brief summary of the method if you are writing up this experiment as a lab report).

For each of the 20 Cepheids the following tasks need to be carried out (here we refer to AN Aur as an example):-

i. Copy and paste the data from the first two columns (A and B) of AN_Aur_p.xls into the first two columns of the POWERX page of Cepheid_powerx.xls.  (Hint: copy the data from row 2 onwards, and ensure that you copy at least as many rows as there were epochs in the previous Cepheid file – using blank rows as required. Otherwise your new analysis will include data from the previous Cepheid).

ii. In cells C2 and D2 of Cepheid_powerx.xls choose values for T1 and T2: the lower and upper limit of the period range (in days) over which the power spectrum is to be computed. The program will do so at 101 equally spaced period values between T1 and T2, updating the calculations in the spreadsheet automatically.  (Note that your choice of values of T1 and T2 is not too crucial, since this program is designed only to identify approximately likely candidate periods. A sensible choice for most of the Cepheids is T1 = 3, T2 = 28 days, which gives trial period values equally spaced at 0.25 day intervals, but you can experiment with other limits).

iii. Switch to the Graph 1 page of Cepheid_powerx.xls.  Make a note of the peaks in the graph of the power spectrum. (Hint: the mathematics of the power spectrum causes the graph to increase monotonically for large trial periods, but you should only note maxima in the graph. The monotonic increase will not change even if T2 is increased, and does not indicate a possible Cepheid period).

Step 2: Least Squares Fitting

This part of the experiment is carried out using the program Cepheid_least_squares.xls; this program performs a least squares fit, modelling the Cepheid data as a low-order Fourier series and estimating the values of the parameters of that series by minimising the 
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 statistic: the sum of the squared differences between the observed Cepheid data and the values predicted by the Fourier series model. (Further theoretical background on least squares fitting is provided in the Appendix, which you should read first before beginning to analyse the data. Again, it is not necessary to reproduce this background material in detail in your lab record, but you should include a brief summary of the least squares method if you are writing up this experiment as a lab report).

For each of the 20 Cepheids the following tasks need to be carried out (again we refer to AN Aur as an example):-

i. Copy and paste the data from the first two columns (A and B) of AN_Aur_p.xls into columns A and C of Cepheid_least_squares.xls.  (Hint: again, copy the data from row 2 onwards, and ensure that you copy at least as many rows as there were epochs in the previous Cepheid file – using blank rows as required).

ii. In cell I2 of Cepheid_least_squares.xls insert the value of one of the peaks in the power spectrum obtained for this Cepheid in Part 1. (This value is the trial period which is used as a first approximation by the least squares fitting program).

iii. Click on Tools and then Solver on the toolbar, then on Solve in the Solver Parameters window. The least squares fitting program will then converge on the best fit solution.  This solution will be displayed in the graphics window (marked ‘fit’) together with the real data (marked ‘mag’).  It should be apparent from the graphics window whether this ‘best fit’ is – in fact – a good fit to the data; a more quantitative means of assessment is provided by the value in cell H5, which displays the 
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 of the fit. (The program will ask if you want to keep this value).

iv. Repeat steps ii and iii for each of the power spectrum peaks obtained in Part 1; you may find that two or more of these peaks converge to the same best-fit period, but if more than one ‘best-fit’ value is obtained in this manner (i.e. if the least squares program is finding one or more local minimum) then determine the global minimum value by choosing the period which gives the lowest 
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 in cell H5.

v. Record the global best fit period, and also the best fit value of the mean visual apparent magnitude, as indicated in cell G5. Also note down the value of 
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 for this fit, and the number of epochs of observation for this Cepheid. (You will need these to determine an error on the fitted mean apparent magnitude – the Lab Head or one of the demonstrators will discuss with you precisely how this can be done. The error on the fitted period is, in fact, very small – provided that a period alias has been avoided – and can be neglected).

Step 3: Determining the Period-Luminosity Relation

Having obtained mean apparent visual magnitudes, with estimated errors, for each of the 18 Cepheids, the final step in this experiment is to convert these to mean absolute visual magnitude and plot them against estimated log(period), thus allowing determination of the slope and intercept, A and B, in equation (1) above.

To do this we use the data in Table 1, and the distance modulus formula, relating apparent and absolute visual magnitude
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where 
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 is the distance of the Cepheid (in parsecs). This equation assumes no extinction due to, e.g., interstellar dust, which would have the effect of making a star appear dimmer than it really is.  Since many of the Cepheids considered in this experiment lie close to the Galactic Plane, it is important to correct for extinction before plotting the period-luminosity relation. We write
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and estimate the visual extinction 
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 via the relation
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, where 
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 is the colour excess or reddening of the Cepheid, as listed in Table 1. (Ask one of the demonstrators if you want to know where this relation comes from. You may assume that both the Cepheid distances and reddening values, given in Table 1, are free from error).

If possible, you should use a least squares package (e.g. in excel) or directly apply the formulae in the Laboratory Manual for the least squares fit to a straight line, to estimate the slope and intercept (with their errors) of your period-luminosity relation – as opposed to merely fitting them ‘by eye’.

Table 1:  Galactic Cepheid Data

	Cepheid
	Distance (pc)
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	Cepheid
	Distance (pc)
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	AN Aur
	3559
	0.593
	RY Cas
	2828
	0.649

	CH Cas
	3442
	0.939
	SW Cas
	2008
	0.494

	ER Aur
	8243
	0.519
	SY Aur
	2277
	0.454

	FM Aql
	890
	0.646
	SY Cas
	1905
	0.464

	GV Aur
	5188
	0.581
	SZ Aql
	1898
	0.641

	IN Aur
	6562
	0.948
	TT Aql
	1055
	0.495

	KK Cas
	3461
	0.992
	U Aql
	594
	0.399

	RS Cas
	1406
	0.875
	VW Cas
	3443
	0.475

	RX Aur
	1652
	0.276
	YZ Aur
	4876
	0.565


Appendix: Background Theory

This background information explains the basic theory behind the statistical approach employed in the software used in this experiment.  The description is appropriate for any periodic data – not just Cepheid variables, but also e.g. eclipsing binary stars.

General

Suppose measurements are made of a periodic quantity at a set of different times, 
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say.   In the simplest case, the data will have a sinusoidal form with a frequency of 
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is the period of the system.   Thus, the result of a measurement of, say, the visual apparent magnitude at time 
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 EMBED Equation.3  [image: image21.wmf]±
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where 
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 is the mean apparent magnitude, 
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 is the amplitude, 
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  is the phase, and the experimental error can be assumed to be random and relatively small.

In the more general case, we can consider the data as a Fourier series – i.e. a sum of cosine terms with frequencies which are integer multiples of .
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where L is some integer.   The theory of Fourier series tells us that we can represent any function, provided we allow 
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.  In the case of a Cepheid variable, however, only a few terms in the Fourier series are adequate to describe very well the periodic variation in apparent magnitude of the star. If the Cepheid lightcurve were exactly sinusoidal, we would require only the 
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 term.   The additional terms for 
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 correspond to the harmonics in a sound wave, for example from a vibrating wire.   Note that for each value of 
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 there is an amplitude term, 
[image: image32.wmf]n

a

 and phase term, 
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Power Spectrum Estimation

This is the simplest method for estimating the period.   Suppose a trial frequency f is chosen and the set of  N measurements of the radial velocity is used to form the two sums, C and S, defined by





and





We develop the theory here for the case of an exactly sinusoidal variation, although a similar (if more algebraically messy) treatment holds when the variation is a sum of several Fourier terms.  Ignoring the experimental errors, the expressions for C and S can be expanded to give





and





If the data set contains measurements over a range of epochs which covers at least one period (and preferably many) and is uniformly distributed in time, the terms, 2fti​ and 2f + )ti,, should give a wide range of values, so that the sines and cosines of these terms should give both positive and negative values in roughly equal measure.   Their sums will therefore give a value close to zero.    In the case of the terms involving  2f -)ti, there will be a similar cancellation if  f  is not close to  but when they are close, the cancellation will not be so strong.   If  f =  the sines and cosines in the terms involving 2f -)ti  all have the same value,  -sin   and  cos   respectively, and there is no cancellation.  Hence, there are peaks in the functions C and S at f = .   These have values





The amplitude, a, is given by the equation





and the phase, , by





The power spectrum, P, is given by


P2   =  C2 + S2
as a function of f, the trial frequency.   For ideal data, this has a peak at  f =   with a value of  a2  as shown in the diagram below.
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In practice, the data for a Cepheid variable is not evenly distributed.   For example, there will be times each day when – at least for ground based observations – a Cepheid will be below the horizon, and bad weather can also cause an important loss of data.   This means that the condition that the data should be evenly distributed is not always well satisfied and this can result in spurious peaks in P. We can determine the true peak by applying the method of Least Squares, which we now describe.

Least squares fitting

This method estimates values of the quantities to be determined (known as parameters) by comparing the results from some theoretical expression (known as the model) with the actual experimental data.   The parameters are included in the theoretical expression, their values are varied until the ‘best fit’ to the data is obtained and the resulting estimated values are taken as those giving the best fit to the data.   This procedure is now described in some more detail.

Suppose we are studying some physical quantity, y, which depends on another quantity, x, and on a set of parameters, a1, a2,  .... ap, which we want to estimate.   Suppose that we make a set of N observations of y, each for a different value of x. Consider the value of y when the quantity x = xi.   Theory gives a prediction for y at xi in the form of an algebraic expression for y involving xi and the parameters a1, to ap.   This expression can be written symbolically as  ypred = F(xi, a1, a2, ....ap) – i.e. y is some function, F, of x and the parameters, a1, a2, ....ap.   The actual observed value of y = yi will, however, not exactly equal ypred – due to error both in the measurement of yi and in the model (e.g. if the assumed values of the parameters a1, a2, ....ap differ from their true values). For each observed value of yi it may be possible to estimate this combined error on yi, and we denote it by i. In other words we suppose that yi  ~  ypred + i
The method of Least Squares provides us with a means to estimate the parameters, a1, a2, ....ap.   For any given set of values of a1, a2, ....ap the square of the difference between the predicted value, ypred and the observed value, yi, is taken as a measure of the goodness of agreement between prediction and experiment for that particular value of xi.   Because data points with small estimated errors give more information than those with large errors, the combined fit for all the data has the value for each point divided by the square of its error so that the most precise points are given a higher weighting.   The quantity used to measure the quality of the fit to all the data is the following sum over all the data, known as ‘chi-squared’.
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If the errors are not known or cannot be estimated, it has to be assumed that they are all the same so that equal weighting is given to all data points and the quantity used is the sum of the squares of the differences.
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In both cases, the terms a1  to  ap   are varied so as to get a minimum and the resulting values are used as the experimentally estimated values of a1  to  ap.

Usually the minimisation has to be carried out numerically on a computer.   There are a number of standard numerical methods for finding  such minima.   They use one of several possible techniques for varying a1  to  ap  so as to find the minimum as efficiently and quickly as possible.   They usually have one drawback.   Since they only look at values close to the current ones for a1  to  ap, if the starting values are not close to the true minimum, they might fall into a local minimum without finding the true one. Therefore, it is advisable to start off with values which are close to where it is suspected the true minimum exists.   The method of least squares is often not suitable for searching for a minimum if a good starting point is not already known.   This may become clearer as you analyse the data in this experiment.
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