Department of Physics & Astronomy

Astronomy 2 Laboratory 

  MODELLING PLANETESIMAL COLLISIONS 

Aim 

To investigate the size distribution of particle fragments resulting from collisions.  Students will use a household brick, broken into pieces with a sledgehammer, to simulate the collision processes that occurred in, e.g., the very early Solar System, the formation of the asteroid belt and Saturn’s rings.  Students will study the distribution of fragment sizes and compare them with the distribution of asteroid sizes and the diameter distribution of lunar impact craters:  students will then compare all three distributions with the power law  distribution predicted by theory.  Finally, students will make some estimates of the frequency of asteroid impacts on Earth.
Task List


Analyse size distribution of asteroids, and carry out a power law fit to the data


Measure the density of household bricks, in order to more easily estimate the number of fragments


Use a sledgehammer to smash household bricks into fragments, simulating asteroid collisions


Analyse the fragment size distribution, using buckets to sift and separate the fragments


Fit a power law distribution to the brick fragment sizes


Analyse the size distribution of lunar impact craters, and fit a power law to these data


Extrapolate from the lunar data an estimate of the frequency of asteroid impacts on Earth

Apparatus

· Sledgehammer
· Bricks
· Protective cloth
· Sifting buckets
· Plastic bags
· Scales
· Safety goggles
· Lunar photographs
Part 1:  The Distribution of Asteroid Sizes

Background

The minor planets, or asteroids, are mainly to be found in a belt between the orbits of Mars and Jupiter.  The distribution of their sizes is far from uniform, but nonetheless displays a fairly well-behaved and predictable pattern: for example there are only about 150 asteroids (including Vesta, the first to be discovered) which have diameters greater than 100km, while there are believed to be as many as one million objects with diameters greater than 1km.

The distribution of asteroid sizes is roughly described by a power law, of the form:
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 is the number of objects of a given diameter, 
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 are constants.  This power law distribution suggests a collisional fragmentation process – i.e. a small number of large objects undergoing a series of collisions, producing large numbers of smaller objects, which in turn undergo further collisions, producing larger numbers of even smaller objects, and so on.  It is thought that power law behaviour continues down to the size of dust grains, smaller than a millimetre in diameter.  Moreover, the physical details of how the collisions take place are fairly unimportant; the mathematical power law form of equation (1) is still obtained, and holds true for objects ranging in size by a factor of more than 100 million.

Fitting a Power Law Distribution

Taking natural logarithms of both sides of equation (1) gives the equation


[image: image6.wmf]D

a

A

N

log

log

log

+

=


which is equivalent to the equation of a straight line, 
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.  Thus, by plotting the size distribution as a log-log plot, we can use the method of least squares to estimate, with errors, the best-fit values of the constants 
[image: image11.wmf]a

 and 
[image: image12.wmf]b
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) .
Table 1 summarises the size distribution of asteroids larger than 50m in diameter.

	Diameter
	500 km
	250 km
	100 km
	10 km
	1 km
	100m
	50m

	Number
	3
	10
	130
	5000
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Table 1:
Distribution of asteroid sizes

TASK:  Using the data in Table 1, construct a log-log plot of the asteroid size distribution and apply the method of  weighted least squares  (ask one of the demonstrators for a handout about this method) to estimate the values of the constants 
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, with errors.  Assume Poisson errors on the values of 
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Part 2:  Modelling Asteroid Collisions

In this part of the experiment you will test the hypothesis that asteroid size distributions are the result of collisional processes by simulating such collisions for yourself – using a household brick as a rocky asteroid, and a sledgehammer to provide the impacts.  (Of course, strictly speaking a more realistic simulation would involve smashing two or more bricks together, but the idea of A2 students throwing bricks at each other would never have got past the Departmental Safety Committee!).

It is expected, however, that your collisions will produce far too many small “asteroids” to make it sensible to count them one at a time.  Consequently, you will estimate the number of small asteroids based on their total mass – using the density of your original “asteroid” as a guide.

TASK:
  Using the scales provided, weigh your bricks – estimating an error on your measurements.  Next, use a ruler to measure the dimensions of each brick, and hence determine its volume (again, with an estimate of the error on your calculation).  Hence, estimate the mean density of each brick, with an error.

Note that several different kinds of brick are provided, including ones with circular holes and bricks designed for driveway paving.  Which type of brick has the highest mean density?

Simulating the Collisions

Now take your bricks, sledgehammer, protective cloth, plastic bags and safety goggles outside to the front steps of the Observatory.  Find a safe place, a few metres away from the door (and from any cars parked outside!).

(Note: there is only one set of scales and sifting buckets and one sledgehammer; you will need to coordinate your brick smashing with the other lab group(s) carrying out this experiment).

For each of your bricks:

a) wrap a piece of protective cloth tightly around it, and then place the wrapped brick inside a plastic bag.

b) place the brick on the ground (or on a wooden board, which can be provided if you prefer)

c) PUT ON THE SAFETY GOGGLES
d) make sure your lab partner is standing well back

e) take the sledgehammer and swing away!

You may want to take turns hitting the brick; if you do MAKE ABSOLUTELY SURE THAT YOU PUT ON A PAIR OF GOGGLES BEFORE BEGINNING / RESUMING HITS WITH THE SLEDGEHAMMER.  Alternatively you might prefer to divide the bricks between you and your lab partner, and for each brick have it smashed by only one of you.  (Think about any systematic effects which this might introduce into your results).

You will most likely have to hit the brick about 4 to 6 times to ensure that you end up with enough small pieces for your analysis.  If time permits, and you have the energy / motivation, you may want to repeat the experiment with bricks smashed a different number of times – e.g. comparing 5 hits with 10 hits, to see what effect this has on the distribution of fragment sizes.

Note that the protective cloth and bag probably won’t last for more than a few hits before they rip.  Don’t worry about this; their job is simply to hold the fragments together so that you can easily count or weigh them, as well as protecting you from flying debris.  The cloth and bags won’t need to be used again.

Sifting the Fragments

Once you have finished smashing each brick, carefully remove the protective cloth (or what is left of it!) from the plastic bag and unwrap the cloth – being careful to ensure that you don’t lose any brick fragments.

There is a series of sifting buckets provided.  These are plastic buckets with circular holes in their base, ranging in size from about 5cm (2 inches) to 0.3cm (1/8 inches) in diameter.  Their job is to help you divide the fragments by size.  You are also provided with two additional buckets, which don’t have holes in their base.

a) Carefully pour the brick fragments into one of the buckets which does not  have holes.

b) Take the sifting bucket with the largest (i.e. 5cm) holes.  Working with your lab partner, with one of you holding the sifting bucket over the other bucket which does not have holes in its base,  pour the brick fragments through the sifting bucket – using the holes as a sieve.  Shake the sifting bucket until all pieces smaller than ~5cm in diameter fall through the holes.

c) Transfer the remaining contents of the uppermost bucket – i.e. the fragments larger than 5cm – into one of the transparent plastic bags, counting the fragments as you do so (there should be only a small number of pieces – and indeed some of them may be quite large, depending on how many ‘hits’ you made with the sledgehammer).

d) Now take the lower bucket – which contains the fragments smaller than 5cm – and repeat from step b), pouring its contents through the next sifting bucket, with base holes 2.5cm in diameter.  If the number of sifted fragments is small enough (say, less than 20) count them explicitly before you pour them into a plastic bag.

e) Repeat until, at the end, you have filled 6 different bags with brick fragments.

Analysing the Fragments

Using the scales provided, weigh the contents of each plastic bag, assigning an error to your measurement.  Use your previous estimate of the mean density of the brick to calculate the volume (with an error) of fragments in the bag.  You now need to convert this volume into an estimate of the number of brick fragments.

A reasonable model (particularly for the smaller fragments) will be to assume that the fragments are spherical, with diameter approximately equal to the mean of the hole diameters of the two buckets which ‘sandwich’ the fragments.

e.g. consider the fragments which fell through sifting bucket 3 (hole diameter 1.25cm) but not through sifting bucket 4 (hole diameter 0.6cm); we model these as spherical, with diameter 0.9cm.

Question:
what should you take as the mean radius of fragments which fell through sifting bucket 5 (hole



diameter 3cm)

For the largest fragments, you can of course compare the predicted number of fragments, assuming a spherical model, with the actual number which you counted.  This provides a good consistency check of the validity of the spherical model, although you should bear in mind that it is less likely to apply accurately for the larger fragments. (Can you think of a reason why this should be?)

Thus, you should obtain an estimate of the number of fragments for each radius.  Is it reasonable to assign a Poisson error to this number?

Plotting your results

As you did in Part 1, construct a log-log plot of the brick fragment size distribution and apply the method of weighted least squares to estimate the values of the constants 
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, with errors, for a fit to a lower law distribution.

Compare your results with those of Part 1; did you find a power law index for your “asteroids” which was similar to that for the real asteroid distribution?

Part 3:  Size Distribution of Craters on the Moon

If asteroid sizes are related to collisional processes, and if those sizes follow a power law distribution, then it seems reasonable to expect that impact cratering of a much larger object (simply another collisional process) would also follow a power law distribution.

Photograph A shows an area of the Moon’s surface,  with dimensions 196 by 296 kilometres.  Photograph B is a small portion of the upper-right area of Photo A, only 24 x 30 kilometres on a side, encompassing an area of 720 square kilometres (about 80 times smaller than the area covered by Photo A).

TASK:  Using the key to guide you, count the number of craters on Photo A with diameters between 25km and 10km, and then 10km and 5km.  Attach a Poisson error to your counted numbers.

Repeat these steps using Photo B, but now selecting craters with diameters between 5km and 1km.  Finally, using only the inset portion of Photo B  (with dimensions 15 x 12km), count the number of craters with diameters between 1km and 0.2km.  (For convenience, the 1km and 0.2km templates are reproduced in the corner of the inset box).  Again attach a Poisson error to your counts.

Before fitting a power law to the crater size distribution, first you need to re-scale your crater counts to a common normalisation, which we take here to be the number of craters per 100000 square kilometres.

TASK:  Rescale your measured crater counts to give the number / 100000 km2, remembering to adjust your Poisson noise estimates accordingly.  Use your normalised counts to fit a power law to the crater size distribution, following the same procedure as in Steps 1 and 2.  How do your results compare with those of the previous power law fits?

Part 4: Asteroid Impacts on Earth

Since the Moon and the Earth occupy the same region of the Solar System, it is reasonable to assume that both have been bombarded by similar numbers of sizes of asteroids and planetesimals.  The only difference is that impacts on the Earth have been buffered somewhat by the atmosphere, and most impact craters have in any case been obliterated by erosion and weathering.

We can use the lunar crater record, however, to estimate the numbers and sizes of impacts that have occurred on the Earth.  As a general rule of thumb, an asteroid of a given size will produce a crater 10 times its own diameter.  Hence an asteroid 1km in diameter will produce a lunar crater roughly 10km in diameter. 

Question:   from your fitted power law distribution in part  estimate how many objects 1km in diameter (and thus producing 10km craters) have impacted the lunar surface / 100000 km2 ?

Given that the radius of the Earth is 6368km, re-scale your result above to estimate the number of 1km objects which have impacted the Earth in the same period of time over which the cratering shown in Photos A and B was accumulated.

Question:   If the Moon’s geology has remained fairly undisturbed (apart from impact cratering!) for about 3.5 billion years, use your result for the number of 1km objects impacting the Earth to estimate the probability that a 1km asteroid impact would occur in any given year.

From your answer, compute how frequently on average impacts of this size occur on the Earth.  What is the probability that the impact of a 1km object will occur in your lifetime?  (Such an impact would bring about continent-wide devastation and global atmospheric disruption, but is unlikely to be an extinction-level-event).

Compare your answers with the ‘official’ estimates reproduced below.
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