Department of Physics and Astronomy

Astronomy 1X Session 2006-07

Dr Martin Hendry

6 lectures, beginning Autumn 2006

UNIVERSITY of GLASGOW

<u>Dr Martin Hendry</u>

- Room 607, Kelvin Building
- email: <u>martin@astro.gla.ac.uk</u>
- Tel: ext 5685
- Office hours: no formal time

Course webpages: access via <u>A1X moodle site</u> http://moodle.gla.ac.uk/physics/moodle/ ASTRONOMY CHAISSON . MCMILLAN

Course Textbook available as a **special package** from the University Bookshop:

Includes additional chapters from Carroll & Ostlie which are **essential** to A1X,Y

Cost

£49.99

Includes access to online learning resources for Astronomy Today

Astronomy A1X 2006-07 Solar System Physics I – Lecture Plan

Introductory Tour of the Solar System 1 lecture

- Qualitative description of the Sun, planets, moons and minor bodies, contrasting Jovian and terrestrial planets
- Vital statistics
- o Overview of Solar System formation

Gravitation and Solar System physics 1.5 lectures

- Newton's law of gravitation and link to A1X Dynamical Astronomy
- o Surface gravity and escape velocity
- o Tidal forces

Astronomy A1X 2006-07 Solar System Physics I – Lecture Plan

The physics of planetary atmospheres 1.5 lectures

- The ideal gas law and velocity of gases
- Hydrostatic equilibrium and atmospheric scale heights

The Jovian planets and their moons

2 lectures

- o Internal and atmospheric structure and composition
- o Ring systems and Roche stability
- Physical properties of the main satellites
- Case studies: Titan and the Galilean moons

Some vital statistics:-

The Solar System consists of:-

- o the Sun,
- o its 8 planets,
- o their moons,
- o dwarf planets, asteroids and comets,
- o the 'Solar wind'
- Astronomers have studied the motions of the Sun, Moon and planets for thousands of years (see A1X Positional Astronomy).

Retrograde motion

Some vital statistics:-

The Solar System consists of:-

- o the Sun,
- o its 8 planets,
- o their moons,
- o dwarf planets, asteroids and comets,
- o the 'Solar wind'
- Astronomers have studied the motions of the Sun, Moon and planets for thousands of years (see A1X Positional Astronomy).
- Before the invention of the telescope, however, we knew almost nothing about their true nature

Galileo Galilei: (1564 - 1642)

In 1609 observed phases of Venus

Geocentric model

In 1609 observed phases of Venus

Geocentric model

Heliocentric model

Phases of Venus impossible to explain in geocentric model

> Clear evidence that the Earth went round the Sun, and not the other way round

The Sun: some vital statistics:-

The Sun is a star: a ball of (mainly) hydrogen gas, 700,000 km in radius (about 100 Earth radii)

The Sun: some vital statistics:-

The Sun is a star: a ball of (mainly) hydrogen gas, 700,000 km in radius (about 100 Earth radii)

It generates heat and light through nuclear fusion:

Surface temperature = 5800K Central temperature = 15 million K

Balance (hydrostatic equilibrium) maintained between *pressure* and *gravity*

Hydrogen fusion - fuelling a star's nuclear furnace

The Sun: some vital statistics:-

The Sun is a star: a ball of (mainly) hydrogen gas, 700,000 km in radius (about 100 Earth radii)

It generates heat and light through nuclear fusion:

Surface temperature = 5800K Central temperature = 15 million K

Balance (hydrostatic equilibrium) maintained between *pressure* and *gravity*

The Sun's outer atmosphere, or *corona*, is very hot (several million K) - heated by twisting of the Sun's magnetic field?...

Earth's magnetic field

M

5

Magnetic fields on the sun

The Planets: some vital statistics:-

Name	Diameter* (Earth=1)	Mass (Earth=1)	Mean distance from the Sun
Mercury	4880 km (0.383)	$3.302 \times 10^{23} \text{ kg}$ (0.055)	5.79×10^7 km (0.387 AU)
Venus	12104 km (0.949)	$4.869 \times 10^{24} \text{ kg} (0.815)$	1.082×10^8 km (0.723 AU)
Earth	12756 km (1.000)	$5.974 \times 10^{24} \text{ kg}$ (1.000)	1.496×10^8 km (1.000 AU)
Mars	6794 km (0.533)	$6.418 \times 10^{23} \text{ kg}$ (0.107)	2.279×10^8 km (1.524 AU)
Jupiter	142984 km (11.209)	$1.899 \times 10^{27} \text{ kg}$ (317.8)	7.783×10^8 km (5.203 AU)
Saturn	120536 km (9.449)	$5.685 \times 10^{26} \text{ kg}$ (95.16)	1.432×10^9 km (9.572 AU)
Uranus	51118 km (4.007)	$8.682 \times 10^{25} \text{ kg}$ (14.53)	2.871×10^9 km (19.194 AU)
Neptune	49528 km (3.883)	$1.024 \times 10^{26} \text{ kg}$ (17.15)	4.498×10^9 km (30.066 AU)
Pluto	~2300 km (0.18)	$1.3 \times 10^{22} \text{ kg} (0.0021)$	5.915×10^9 km (39.537 AU)

* Equatorial diameter

See also table 6.1 in Astronomy Today

Mean Earth - Sun distance = Astronomical Unit

149,597,870 km

1 A.U. = 107 solar diameters

May 7th 2003: Transit of Mercury

Edmond Halley (1656 - 1742)

In 1716 Halley presented a paper, appealing to astronomers around the world to observe the Venus transits of 1761 and 1769

He predicted the astronomical unit could be measured to an accuracy of better than 1%

Local Time: 08/06/2004 AD 05:00 Location: Stay on surface of Earth Lon = 004° 18' W Lat = 55° 54' N Mew: Lock on Sun Aam = 061° 47' 30" At = +08° 48' 36" Zoom = 50.0

Venus

Venus transit - 08 June 2004

NASA's first mission capable of finding Earth-size and smaller planets

> Kepler mission (launch 2008?)

Mean Earth - Sun distance = Astronomical Unit

149,597,870 km

1 A.U. = 107 solar diameters

The orbits of the planets are ellipses (see A1X Dynamical Astronomy) and lie in, or close to, a plane - the ecliptic.

-=Venus

Mean Earth - Sun distance = Astronomical Unit

149,597,870 km

1 A.U. = 107 solar diameters

The orbits of the planets are ellipses (see A1X Dynamical Astronomy) and lie in, or close to, a plane - the ecliptic.

The planets divide into two groups:-

Inner *Terrestrial* planets: small, rocky

Outer Jovian planets: gas giants

Mercury, Venus, Earth, Mars

Jupiter, Saturn, Uranus, Neptune

Venus Vital Statistics:

Surface temperature 450K Atmosphere ~100% CO₂ Pressure 90 times Earth's Sulphuric Acid Rain Thick crust: regular volcanic 'resurfacing'

Formation of the Moon: Impact from Mars-sized planetesimal during first billion years.

Impact energy = 1 million million megatons

Mars 2004: > Mars Express (+ Beagle 2) > Spirit + Opportunity

Jan 23rd 2004: Mars Express Orbiter detects water ice at the South Pole of Mars.

Pancam (pair) Rover Pancam Equipment Low Gain Calibration Deck (RED) Antenna Target (LGA) Navcam (pair) UHF Antenna Pancam Mast **High Gain** Assembly (PMA) Antenna (HGA) Capture/Filter Magnets 87 B. I. Solar Front Arrays. Hazeam (pair) Warm Electronics Instrument Box (WEB) Deployment **Rocker-Bogie** Device (IDD) Mobility System In-situ Instruments (APXS, MB, MI, RAT).

Galileo's Moons

Inside Europa

Could there be life?....

JIMO: Jupiter Icy Moons Orbiter

Horizon at 88.5°

3 cm 240 cm

8

2

Lecture 1: <u>A Tour of the Solar System</u>

Mean Earth - Sun distance = Astronomical Unit

149,597,870 km

1 A.U. = 107 solar diameters

The orbits of the planets are ellipses (see A1X Dynamical Astronomy) and lie in, or close to, a plane - the ecliptic.

The planets divide into two groups:-

Inner *Terrestrial* planets: small, rocky Mercury, Venus, Earth, Mars

Outer Jovian planets: gas giants Jupiter, Saturn, Uranus, Neptune

Pluto is a 'misfit' - Kuiper Belt object (planetesimal); together with asteroids and comets, 'debris' from formation of the Solar System.

Invention of telescope led to discovery of Minor Planets or *asteroids*. Most orbit between Mars and Jupiter - *Asteroid Belt*

'Lumps' of rock (up to 1000km across), reflecting sunlight. Only visible through a telescope

NEAR - 433 Eros

Feb 10 2000 09:10:00

Leonid Meteor Shower: Nov 17th – 18th

Radiant of the Leonid Meteor Shower

Leonid Meteor Shower: Nov 17th – 18th

874 years till Doomsday?...

Credit: Arecibo Observatory

Asteroid 1950DA: 1 in 300 chance of collision with Earth on March 16th 2880

(*Science*, *Apr* 5th 2002)

874 years till Doomsday?...

Credit: Arecibo Observatory

Asteroid 1950DA: 1 in 300 chance of collision with Earth on March 16th 2880

(Science, Apr 5th 2002)

Need to determine the orbit of the asteroid...

...all about gravity

