6. Advanced Numerical Methods

Part 1:  Monte Carlo Methods

Part 2. Fourier Methods
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Part 1: Monte Carflo Methods

1. Uniform random numbers

Generating uniform random numbers, drawn

from the pdf U[O,1], is fairly easy. Any scientific
Calculator will have a RAN function... o)
Better examples of U[0,1] random
humber generators can be
found in Numerical Recipes.

http://www.numerical-recipes.com/
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6.1. Uniform random numbers

Generating uniform random numbers, drawn
from the pdf U[O,1], is fairly easy. Any scientific

Calculator will have a RAN function... )

Better examples of U[O,1] r'andom
humber generators can be r
found in Numerical Recipes.

http://www.numerical-recipes.com/ |

In what sense are they better?...

Algorithms only generate pseudo-random 0 1
numbers: very long (deterministic) sequences of humbers which are
approximately random (i.e. no discernible pattern).

The better the RNG, the better it approximates U[0,1]



We can test pseudo-random numbers for randomness in several ways:

(a) Histogram of sampled values.

We can use hypothesis tests to see if the sample is consistent with the

pdf we are trying tfo model.
n = 100

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.




We can test pseudo-random numbers for randomness in several ways:

(a) Histogram of sampled values.

We can use hypothesis tests to see if the sample is consistent with the

pdf we are trying tfo model.
n = 100

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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Assume the bin number counts are subject
to Poisson fluctuations, so that giz — nip“’d

Note: no. of degrees of freedom = n,;, — 1
since we know the total sample size. 0 1




(b) Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the
phase portraits - scatterplots of the i value against the (i+1)* value etc.

(see Gregory, Chapter 5)
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(b) Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the
phase portraits - scatterplots of the i value against the (i+1)* value etc.

We can compute the 0.2[T"
Auto-correlation function 0.8

5| |
) Z[x—x(,+,—x)] . ®
< 2 4 6 8 10
\/Zx x \/Z l+] Lo 2

J is known as the Lag

0o 200 400 600 800 1000
Lag

pG)=1 for j=0
If the sequence is uniformly random, we expect

o) =0 otherwise



6.2. Variable transformations
Generating random numbers from other y(f)
pdfs can be done by transforming random
numbers drawn from simpler pdfs.

The procedure is similar to changing
variables in integration.

Suppose, e.g. X~ p(x)

Let ¥ = yp(x) be monotonic

The d = d.
n p('y) y p(?f) X (%) p(x(»))

VA / B _lav/ax

Probability of number Probability of b / -
between y and y+dy . ooad! 1ty of number Because probability

between x and x+dx must be positive



We can extend the expression given previously to the case where

y(x) is not monotonic, by calculating

p(y)dy = Zp(xi)dxi so that

y(x)
F Y

p(y)

p(x,(»)
~ |dy)/dx,|
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Example 1

Suppose we have  x ~ U[0,1]

1 for O<x<l

Then p(x)= {

0 otherwise

Define y=a+(b—a)x

d
So d—i =(b-a)
, ) V. for a<y<b
ie. =

Ly 0 otherwise

or y~Ula,b]

p(gc)

rQy)




Normal pdf with mean zero and standard deviation unity
Example 2

Numerical recipes provides a program to turn x ~UJ[0,1] into y ~ NJ[0,1]
Suppose we want Z ~ N[,U, o]

d
We define Z=U+0OYy so that d—Z=O'
4

1 1
Now p(y):mexp _Ey

so p(Z)Z\/%GCXP(—;[Z;U}]
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Normal pdf with mean zero and standard deviation unity
Example 2

Numerical recipes provides a program to turn x ~UJ[0,1] into y ~ NJ[0,1]
Suppose we want Z ~ N[,U, o]

d
We define Z=U+0OYy so that d—Z=0'
4

1 1,
Now p(y):mexp _Ey

RIS
SO p(Z) raexp( |: o :|]

Variable transformation formula also the basis for error propagation’
formulae we use in data analysis - see also SUPAIDA course




L 1%

Question 13:

f x~U[0,1] and y=—Inx, the
pdf of V is

p(y)=e’
p(y)=e”’
p(y)=—Iny

p(y)=Iny



Question13: If x~UJ[0,1] and y=—Inx, the

pdfof V is
A p(y)=ée’
B p(y)=e”’
C p(y)=—Iny

D p(y)=Iny



6.3. Probability integral transform

One particular variable transformation merits special attention.
Suppose we can compute the CDF of Cumulative distribution function (CDF)

some desired random variable Pla) = Ip(x)fix = Prob{x<a)

P(x)

02 04 06 08

University

I O_f GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011



1) Sample a random variable ¥ ~ U[0,1]

2) Compute x suchthat y=P(x) ie. XZP_I()/)

P(x)

0.8

02 04 06
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1) Sample a random variable ¥ ~ U[0,1]

2) Compute x suchthat y=P(x) ie. XZP_I()/)

P(x) - - r

0.8
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1) Sample a random variable y ~ U[0,1]
2) Compute x suchthat y=P(x) ie. XZP_I()/)

3) Then x~ p(x) e X isdrawn from the pdf
corresponding to the cdf P(x)

P(x) - - r

0.8

02 04 06
I
1

. . ﬂ
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Example (from Gregory)
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6.4. Rejection sampling

Suppose we want to sample from
some pdf p,(x) and we know that

p(x)<p,(x) Vx

1) Sample X; from p,(x)

2) Sample ) U[O, P> (Xl )] (Suppose we have an easy’way to do this)
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6.4. Rejection sampling

Suppose we want to sample from
some pdf p,(x) and we know that

p(x)<p,(x) Vx

1) Sample X; from p,(x)

2) Sample ) U[O, P> (Xl )] (Suppose we have an easy’way to do this)

3) If y<p,(x) ACCEPT
otherwise REJECT
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(following Mackay)

6.4. Rejection sampling

Suppose we want to sample from
some pdf p,(x) and we know that

p(X)<py(x) Vx

1) Sample X; from p,(x)

2) Sample Yy~ U[09 P> (Xl )] (Suppose we have an easy’ way to do this)
3) If y<p(x) ACCEPT

otherwise REJECT Set of accepted values {X,-}
are a sample from p (x)
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6.4. Rejection sampling

Method can be very slow if the shaded region is too large.

Ideally we want to find a pdf p,(x) thatis: (a) easy to sample from

- - - b) close to pi(x
UIllVCI'SltY ( ) P .SUPA
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6.5. Genetic Algorithms

U
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E": THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 101:309-334, 1995 December

B 1993, The American Astronomical Society, All rights reserved, Printed in U.S.A.
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o GENETIC ALGORITHMS IN ASTRONOMY AND ASTROPHYSICS

P. CHARBONNEAU
High Altitude Observatory, National Center for Atmospheric Research,' P.O. Box 3000, Boulder, CO 80307-3000;
paulchar@hao.ucar.edu
Received 1994 December 30; accepted 1995 June 9

ABSTRACT

This paper aims at demonstrating, through examples, the applicability of genetic algorithms to wide classes of
problems encountered in astronomy and astrophysics. Genetic algorithms are heuristic search techniques that
incorporate, in a computational setting, the biological notion of evolution by means of natural selection. While
increasingly in use in the fields of computer science, artificial intelligence, and computed-aided engineering de-
sign, genetic algorithms seem to have attracted comparatively little attention in the physical sciences thus far.

The following three problems are treated: ( 1) modeling the rotation curve of galaxies, (2) extracting pulsation
periods from Doppler velocities measurements in spectral lines of § Scuti stars, and (3) constructing spherically
symmetric wind models for rotating, magnetized solar-type stars. A listing of the genetic algorithm-based general
purpose optimization subroutine PIKAIA, used to solve these problems, is given in the Appendix.

Subject headings: galaxies: kinematics and dynamics — methods: numerical — stars: mass loss —
stars: oscillations
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6.5. Genetic Algorithms

f(x,y)=[16x(1 —x)y(1 — y)sin (nwx) sin (n7y)]*,

(Charbonneau 1995) x,ye[0,1], n=1,2,.

\l ul "“k

!l
‘l\\ In1 |
l
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6.5. Genetic Algorithms

(Charbonneau 1995)

1. Construct a random initial population and evaluate the
fitness of its members.

2. Construct a new population by breeding selected individ-
uals from the old population.

3. Evaluate the fitness of each member of the new popula-
tion.

4. Replace the old population by the new population.

5. Test convergence; unless fittest phenotype matches target
phenotype within tolerance, goto step 2.
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6.5. Genetic Algorithms

see http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html

Ph{P1) x=0.14420628 y=0.72317247 [o1]
Encoding: Ph(P2) x=0.71281369 y=0.83459091 [02]

I i
71281369 B3459991 [03]

| T " = —
Gn(PZ) 7128136983459991 [04]
Breeding: Gn(P1) 1442962872317247 [05]
Gn{P2) 712B136083450991 [o6]
(a) Crossover (gene=4):
144 |[EEEEBT2317247 [07]
IR
712|[8136883455991] (o8]
144 [@13608534558901] [09]
712 BOBEB 2317247 [10]
Gn(01) 144B8136983459991 [11]
Gn(02) 7122062872317247 [12]
{b) Mutation (Offspring=02, gene=10):
Gn(0Z2) 7122062872317247 [13]
v122068287[2]317247 [14]
712208287[B]317247 [15]
Gn(02) 7122962878317247 [18]
Decoding: Gn(02) TIZZ982BTRIIT247 [17]
A,

‘71229628 78317247 [18]

+ +
FhiDz) x=0.7T1229628 y=0.7B317247 [19]

Ph(01)  x=0.14481369 v=0.83459991 [20]

A University ‘ )
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6.5. Genetic Algorithms

see http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html

(A) Initial randnm pnpulatmn (B) 10 generation {C] 20" generatlﬂn
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6.6. Markov Chain Monte Carlo

This is a very powerful, new (at least in astronomy!) method for sampling
from pdfs. (These can be complicated and/or of high dimension).

MCMC widely used e.g. in cosmology to determine ‘maximum likelihood'
model fo CMBR data.

Angular power spectrum of CMBR temperature fluctuations

6000 ~ 9|O 2| 0.I5 O.I2 _
TT Cross Power
5000 E- Spectrum E

— A-CDM AIl Data
WMAP

CBI

ACBAR

ML cosmological model,
depending on 7 different

parameters. \

N
(e]
(@]
o
|
o o eH

L(1+1)C/2r (UK2)
S s

S 3

| |

1000 £

(Hinshaw et al 2006) of o



Consider a 2-D example (e.g. bivariate normal distribution);
Likelihood function depends on parameters a and b.

Suppose we are trying to find the

L(a,b)
maximum of L(ab) 1

1) Start off at some randomly
chosen value (a,.b;)

AL
AN
" "rf@:‘!’o'r‘l‘st‘.

2) Compute L(a;,b,;) and gradient

ad)
oa ’ ob (ay.by )
i iy

3) Move in direction of steepest | S
"-?’:‘:"!'0 5 et

+ve gradient - i.e. L(a;,b,) is
increasing fastest

£/

4) Repeat from step 2 until (a,,b,) converges on maximum of likelihood
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Consider a 2-D example (e.g. bivariate normal distribution);
Likelihood function depends on parameters a and b.

Suppose we are trying to find the

L(a,b)
maximum of L(ab) 1

1) Start off at some randomly
chosen value (a,.b;)

2) Compute L(a;,b,;) and gradient
(&%
Gajé‘b (ay.by )

3) Move in direction of steepest
+ve gradient - i.e. L(a;,b,) is
increasing fastest

) ) ‘1‘\:%\1
:ﬁ'%:?i“ x

UAR A
IOAARA
A
¢ *o:*‘t

;:
¢,
e JJ"-'* {;

4) Repeat from step 2 until (a,,b,) converges on maximum of likelihood

OK for finding maximum, but not for generating a sample from L(a,b)
or for determining errors on the the ML parameter estimates.



MCMC provides a simple Metropolis algorithm for
generating random samples of points from L(a,b)

bA

™

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from L(a,b)

b A
1. Sample random initial point P, = (a;, b,)

™

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from L(a,b)

b A
1. Sample random initial point P, = (a;, b,)

2. Centre anew pdf, O, called the
proposal density, on P,

™

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from L(a,b)

bA

1. Sample random initial point P, = (a;, b,)

2. Centre anew pdf, O, called the
proposal density, on P,

3. Sample tentative new point P’ = (a’,b’)
from Q

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from L(a,b)

b A
1. Sample random initial point P, = (a;, b,)

2. Centre anew pdf, O, called the
proposal density, on P,

3. Sample tentative new point P’ = (a’,b’)
from Q

Slice through = Compu’re R = L(a 5 b )
L(a,b) L(alabl)

v

University

.
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5. If R>1 thismeans p’ is uphill from p, .

We accept P’ as the next point in our chain, iie. P, =P

6. If R<1 thismeans p’ is downhill from p, .
In this case we may reject P’ as our next point.
In fact, we accept P’ with probability R.
How do we do this?...
(a) Generate a random number x ~ U[0,1]
(b) If x <R thenaccept p’ andset p, =P

(c) If x> R thenreject p’ andset p, = P,

University
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5. If R>1 thismeans p’ is uphill from p, .

We accept P’ as the next point in our chain, iie. P, =P

6. If R<1 thismeans p’ is downhill from p, .

In this case we may reject P’ as our next point.

In fact, we accept P’ with probability R.
How do we do this?...

(a) Generate a random number x ~ UJ[0,1]
(b) If x <R thenaccept P’ andset p, = p

(c) If x> R thenreject p’ andset p, = P,

Acceptance probability depends only on the previous point - Markov Chain



So the Metropolis Algorithm generally (but not always) moves uphill,
towards the peak of the Likelihood Function.

Remarkable facts

o Sequence of points { P, ,P,,Py,P,,Ps, ... }

represents a sample from the LF L(a,b)  (see notes on website)

© Sequence for each coordinate, e.g. { A1, 0y, A3, 0y, A5y e }

samples the marginalised likelihood of a

®  We can make a histogram of { Ay, 0y, 03,0y, s, eee 5 Ay }
and use it fo compute the mean and variance of @ (i.e.

to attach an error bar to a )

A University * )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA



Why is this so useful?...

Suppose our LF was a 1-D Gaussian. We could estimate the mean and
variance quite well from a histogram of e.g. 1000 samples.

But what if our problem is,
e.g. 7 dimensional?

100

'Exhaustive’ sampling could
require (1000)” samples!

MCMC provides a short-cut. ’ ‘

50

No. of samples
—~.1
I/

To compute a new point in our S 1 2 s
Markov Chain we need to compute Sampled value

the LF. But the computational cost does not grow so dramatically as we
increase the number of dimensions of our problem.

This lets us tackle problems that would be impossible by 'normal’ sampling.



Example: CMBR constraints from WMAP 3 year data ( + 1 year data)

002 0021 0022_ 0023 0024 008 009 01 0yl 012 013
o_n’ Q _h
m
Angular power spectrum of CMBR temperature fluctuations
6000 20 2 05 02
£ ] 0.05 0.1 015 09 082 094 096 0898 1
E TT Cross Power ] T n,
5000 E- Spectrum E
F — A-CDMAIl Data ]
- E ML cosmological model, 3 évBlvllAF’ 3
& 400 E  depending on 7 different % P E
% E parameters.
& 3000 |
9 E
3
= 2000 F 2.8 2.9 3.,  ai 32 06 065 07 075 08 085 09
: log[to™" A Ty
1000 |
0 F ©
(Hinshaw et al 2006)

65 70 75 80 85
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Question 14:  When applying the Metropolis algorithm, if the width
of the proposal density is very small

A the Markov Chain will move around the parameter
space very slowly

B the Markov Chain will converge very quickly to the
true pdf
C the acceptance rate of proposed steps in the Markov

Chain will be very small

D most steps in the Markov Chain will explore regions of
very low probability



Question 14:  When applying the Metropolis algorithm, if the width
of the proposal density is very small

A the Markov Chain will move around the parameter
space very slowly

B the Markov Chain will converge very quickly to the
true pdf
C the acceptance rate of proposed steps in the Markov

Chain will be very small

D most steps in the Markov Chain will explore regions of
very low probability



A number of factors can improve the performance of the Metropolis
algorithm, including:

using parameters in the likelihood function which are (close to)
independent (i.e. their Fisher matrix is approx. diagonal).

adopting a judicious choice of proposal density, to the
shape of the likelihood function.

using a simulated annealing approach - i.e. sampling from a modified
posterior likelihood function of the form

ln[p(ew,f)]}

T

pT(ew,z):exp{

for large T the modified likelihood is a flatter version of the
true likelihood

A University e )
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Temperature parameter I starts out large, so that the acceptance
rate for ‘downhill’ steps is high - search is essentially random.

(This helps to avoid getting stuck in local maxima)

T is gradually reduced as the chain evolves, so that 'downhill’ steps
become increasingly disfavoured.

In some versions, the evolution of 1 is carried out automatically -
this is known as adaptive simulated annealing.

See, for example, Numerical Recipes Section 10.9, or
Gregory Chapter 11, for more details.

University
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A related idea is parallel tempering (see e.g. Gregory, Chap 12)

Series of MCMC chains, with different IB — I/T, set off in parallel,
with a certain probability of swapping parameter states between
chains.

High temperature chains are effective at mapping out the global
structure of the likelihood surface.

Low temperature chains are effective at mapping out the shape of
local likelihood maxima.

A University * )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA



Example: spectral line fitting, from Section 3.

Conventional MCMC MCMC with parallel tempering
5¢ b
4 4
3t 3
~ s
2 2
1} 1
oL il x LR ' il
0 50000 100000 0 50000 100000
Ilteration lteration
12f,
a%“ _%« 1
& 8 08|
=) 206
3 Z
5 5 04f
- * 02
35 35
T (mK)
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Example: spectral line fitting, from Section 3.

Conventional MCMC MCMC with parallel tempering
. 40
E 40 é ;
g 30 £ 30
c - .
Qo 20 o 20 ‘
5 T ! |
|
6 10 6 10} |
O 50000 100000 0 0 50000 100000
Iteration lteration
0.3 0.3
£ 0.25 2025
é 0.2} g 02
> >
= 0.15 £ 0.15¢}
2 S
‘é 0.1 S od
& 005 ® 005}
= t‘M-- o -ge-"'!“"""w—n——
10 20 30 10 20 30
Channel number Channel number
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Approximating the Evidence

Evidence = |[p(data|6,M)p(6|M)d6
|

Average likelihood, weighted by prior

«  Calculating the evidence can be computationally very costly
(e.g. CMBR C, spectrum in cosmology)

«  How to proceed?...
1. Information criteria  (Liddle 2004, 2007)

2. Laplace and Savage-Dickey approximations
(Trotta 2005)

3. Nested sampling (Skl”lng 2004, 2006; http://www.inference.phy.cam.ac.uk/bayesys/ )
(Mukherjee et al. 2005, 2007; Sivia 20006)
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Nested Sampling (Skilling 2004, 2006; Mukherjee et al 2005, 2007)
Evidence = |[p(data|6,M)p(0|M)d@

Key idea:

We can rewrite the Evidence as

Evidence = j p(data|8,M)dX

where X is a 1-D variable known as the prior mass
uniformly distributed on [0,1]

1
Evidence = Z = _[ L(X)dX
0
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Skilling (2006)

1
Evidence = Z = j L(X)dX ¢
0

Area Z
Example: 2-D Likelihood function ol 81151 3 ’ X I
I = |11]24]22]10
1913012616
912318 6

Our plan is to proceed as if we could sort these elements by likelihood, in
the above example to L = (30,26,24,23,22,19,18,16,15,11,10,9,8,6,3,0), whence
Z = B+ i+t e+ et e et et tietististigtistis = 15, to
be evaluated right-to-left into domains of progressively greater likelihood. The
likelihood corresponding to (say) X = %, being one fifth of the way along the
sequence so falling into the fourth cell out of sixteen, is L(X =0.2) = 23.
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Example: 2-D Likelihood function (from Mackay 2005)

» Contours of constant likelihood, L 92

« Each contour encloses a different r

fraction, X, of the area of the
square

« Each point in the plane has an
associated value of . and X L

However, mapping systematically
the relationship between L and 04

X everywhere may be computationally very costly

University
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0, 0, 0y
. 91 II; .!;E 91 /
L(z)! | L)ty L@t/
h ilil \\\ ii x\\\‘\f
1 1 x 1 1 1z 11 i 1z
2 4 2 8 4 2
However, mapping systematically the relationship between
L and X everywhere may be computationally very costly
Un1vers1ty *SuPA
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Skilling (2006)

Approximation procedure

Start with N points 6,,...,0y from prior;
initialise Z =0, Xy = 1.
Repeat for : =1,2,...,7;
record the lowest of the current likelihood values as L;,
set X; = exp(—i/N) (crude) or sample it to get uncertainty,
set w; = X;_1 — X; (simple) or (X;_1 — X;4+1)/2 (trapezoidal),
increment Z by L;w;,
then replace point of lowest likelihood by new one drawn
from within L(8) > L;, in proportion to the prior 7 (6).
Increment Z by N-'(L(6y) + ...+ L(6x)) X;.

University
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L -8 * .

1 .T. . > e o * "
11
2

: -
ry ] T

Let x1 be the largest x-value. The typical value of x; is something like
N/(N +1) or e /N, (The former is its arithmetic expected value, the latter
its geometric mean.) We introduce a contour associated with this point.



Skilling (2006)

0 8 samples XH 1

(-)"_X:_} Step 5

(untad , Step4

T X, Step3

0_._._.— Xz Step 2

o T ¥ % X, Step 1

D—H @ i
Parameter space Enclosed prior mass X

NESTED SAMPLING TERMINATION

Termination of the main loop could simply be after a pre-set number of
steps, or could be when even the largest current likelihood, taken over the full
current box, would not increase the current evidence by more than some small

fraction f;
max(Ly,...,Ln)X; < fZ; = termination. (16)

Plausibly, the accumulation of Z is then tailing off, so the sum is nearly com-
plete.
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7. Advanced Numerical Methods

Part 1: Monte Carlo Methods

Part 2. Fourier Methods
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Part 2: Fourier Methods

In many diverse fields physical data is collected or analysed as Fourier
components.

In this section we briefly discuss the mathematics of Fourier series
and Fourier transforms.

1. Fourier Series

Any ‘well-behaved’ function f(X) can be
expanded in terms of an infinite sum of sines
and cosines. The expansion takes the form:

Joseph Fourier

{ f(x)=1a,+ Z a, cosnx + Z b, sin nx J (1768-1830)
n=1 n=1
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The Fourier coefficients are given by the formulae:

0= [ Fs
72-—72'

a, = 1 I f(x)cos nxdx
72- —7T

b = L j £ (x)sin nxdx
T /1

These formulae follow from the orthogonality properties of sin and cos:

T T T
j sin mx sin nxdx = 7o, | I COS mX COS nxdx = 7o, I sin mx cos nxdx =0
-z -

-
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sevwtooth wave
sgquare wave

14
L 0.8
0.5
[ 0.6
0.5 1.5 L 0.4 l
~0.5 .
_]_ i
0.5 1 1.5 2L
triangle wave semicircle
L 1
0.5 0.8
¥ 0.6
0.5 1.5 A 04
-0.5 0.2
X
-1 8.5 1 1.5 2 L

Some examples from Mathworld, approximating functions with a finite number of Fourier series terms



The Fourier series can also be written in complex form:

=Y A"

n=—0o0

where A = 1 j f(x)e ™ dx
2 2

inx . o
e™ =cosnx+isinnx
and recall that

inx

e "™ =cosnx—isinnx

™E YT ORD KELVIN

“Fourier's Theorem is not only one of the most beautiful
results of modern analysis, but it is said to furnish an
indispensable instrument in the treatment of nearly
every recondite question in modern physics"




Fourier Transform: Basic Definition

The Fourier transform can be thought of simply as extending the idea of a
Fourier series from an infinite sum over discrete, integer Fourier modes to
an infinite integral over continuous Fourier modes.

Consider, for example, a physical process that is varying in the time domain,
i.e. it is described by some function of time A(?).

Alternatively we can describe the physical process in the frequency domain
by defining the Fourier Transform function H(f) .

It is useful to think of 4(f) and H(f) as two different representations
of the same function; the information they convey about the underlying
physical process should be equivalent.
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We define the Fourier transform as
4 )

H(f)= Th(t)ez’”'f 'dt
\_ > y,

and the corresponding inverse Fourier transform as

4 . )
h(e)= [H(f)e ™ df
\_ > y,

If time is measured in seconds then frequency is measured in cycles per
second, or Hertz.
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In many physical applications it is common to define the frequency domain
behaviour of the function in terms of angular frequency w =27 f

This changes the previous relations accordingly:

4 . )
H(w) = j h(t)e* ™ dt
\_ — Y,
4 )
1 K —2mot
h(t) = — j H(w)e ™ dw
27 7
g _J

Thus the symmetry of the previous expressions is broken.
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Fourier Transform: Further properties
The FT is a linear operation:

(1) the FT of the sum of two functions is equal to the sum of their FTs
(2) the FT of a constant times a function is equal to the constant times the
FT of the function.

If the time domain function A(f) is a real function, then its FT is complex.

However, more generally we can consider the case where /(¢) is also a
complex function - i.e. we can write

h(t) = hg () +ih,(?)
EIEXEIn

Real part

Imaginary part

h(t) may also possess certain symmetries: even function  A(t) = h(—t)

odd function  h(t) =—h(-t)



The following properties then hold:

a3

~

Kh/ t) 1s imaginary and odd

: then. ..

h(t) is real H(—f)=[H(f)]*
h(t) 1s imaginary H(—f)=—[H(f)]*
h(t) is even H(—f)=H(f) [1e., H(f)iseven]
h(t) is odd H(—f)=—H(f) [ie., H(f)isodd]
h(t) 1s real and even H(f) 1s real and even
h(t) is real and odd H(f) is imaginary and odd
h(t) 1s imaginary and even H(f) 1s imaginary and even

(1) H(f) 1s real and odd

/

See Numerical Recipes, Section 12.0

Note that in the above table a star (*) denotes the complex conjugate,

‘su@

ie. if z=Xx "+ iy then z*¥ =x — 1y
University
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& 7

For convenience we will denote the FT pair by  h(¢) < H(f)
It is then straightforward to show that
1 "y - g /4
h(at) < HH (f/a) time scaling
a
ﬁh(t /by H(bf) "freguency scaling”
h(t—1y) < H(f)e ™" "time shifting”
h(t)e ™" <> H(f - 1) "Frequency scaling”
University
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Suppose we have two functions g(¢) and h(7)

Their convolution is defined as

4 )

(g*h)0)= [ g(s)h(t—s)ds
- - y,

We can prove the Convolution Theorem (g * h)(t) < G(HH(S)

i.e. the FT of the convolution of the two functions is equal to the product
of their individual FTs.

Known as the lag

e

Also their correlation, which is also a function of ¢, is defined as

4 )

Corr(g, h) = j g(s+1)h(s)ds
A University\. s / *
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We can prove the Correlation Theorem  Corr(g,h) < G(f)H (f)

i.e. the FT of the first tfime domain function, multiplied by the complex
conjugate of the FT of the second time domain function, is equal to the
FT of their correlation.

The correlation of a function with itself is called the auto-correlation

In this case Corr(g,g) & ‘G(f)‘2

2
The function ‘G( f )‘ is known as the power spectral density, or
(more loosely) as the power spectrum.

Hence, the power spectrum is equal to the Fourier Transform of the
auto-correlation function for the time domain function g(7)
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The power spectral density

The power spectral density is analogous to the pdf we defined in previous
sections.

In order to know how much power is contained in a given interval of
frequency, we need to integrate the power spectral density over that
interval.

The total power in a signal is the same, regardless of whether we
measure it in the time domain or the frequency domain:

(" )
Total Power = [|h@|’dt = [|H(f)| df
N _ _ y

Parseval’s Theorem
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Often we will want to know how much power is contained in a frequency
interval without distinguishing between positive and negative values.

In this case we define the one-sided power spectral density:

P(f) = |[H() +|HES)  0<f<o

And Total Power = | B (f)df

O ey 8

When £A(t) is areal function P (f) 2‘H(f)‘2

With the proper normalisation, the total power (i.e. the integrated area
under the relevant curve) is the same regardless of whether we are
working with the time domain signal, the power spectral density or the
one-sided power spectral density.
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From Numerical Recipes,
Chapter 12.0

Time domain

One-sided PSD

Two-sided PSD



Examples
(1) h(t) = const.
"
e
0 -
) h(t) =

h(?)

Imaginary part
gmary’p Real part

Dirac Delta function

/
H(f)=5,(0)

H(f)

H(f)=o0p(f = /o)

H(f)
A




0 otherwise

v

The sinc function occurs frequently in
many areas of physics

Sin X

SINCX =
X

The function has a maximum at x =0
and the zeros occurat x =+mmr

for positive integer m

Y o

H(f)=sinc(z f)

H(f)

il

S N - f
Imaginary part = 0

y=sincx
L3

y=1

st .
1" zeroatx =7 I¥ zeroat x =7

vf\\//\\/

/ A
VAR

> X



(4) h(t) = At) H(f)=sinc*(z f)
A H(f)

Al < 1

12 0 12 t 0 S
Re[ﬂﬂk#
—at 2a°x f
(5) h(t)=e e T
H(f)

Real part
(0fort<0) exp(-at) fort > 0 S /

N

Imaginary part



(6) h(f)zexp(—azfz) H(f)ocexp(—ﬂzfz/az)

i.e. the FT of a Gaussian function in the time domain is a/so a Gaussian in
the frequency domain.
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Question 15: If the variance of a Gaussian is doubled in the time

domain

A the variance of its Fourier transform will be doubled in
the frequency domain

B the variance of its Fourier transform will be halved in
the frequency domain

C the standard deviation of its Fourier transform will be
doubled in the frequency domain

D the standard deviation of its Fourier transform will be
halved in the frequency domain



Question 15: If the variance of a Gaussian is doubled in the time

domain

A the variance of its Fourier transform will be doubled in
the frequency domain

B the variance of its Fourier transform will be halved in
the frequency domain

C the standard deviation of its Fourier transform will be
doubled in the frequency domain

D the standard deviation of its Fourier transform will be
halved in the frequency domain



(6) h(f)zexp(—azfz) H(f)ocexp(—ﬂzfz/az)

i.e. the FT of a Gaussian function in the time domain is a/so a Gaussian in
the frequency domain.

The broader the Gaussian is in the time domain, then the narrower the
Gaussian FT in the frequency domain, and vice versa.

A University * )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA




Discrete Fourier Transforms

Although we have discussed FTs so far in the context of a continuous,
analytic function, 4(¢) , in many practical situations we must work instead
with observational data which are sampled at a discrete set of times.

Suppose that we sample /(¢) in fotal N +1 times at evenly spaced time
intervals A, ie. (for N even)

h, =h(t,) where 1, =kA, k=-N/2,..0,..,N/2

[ If h() is non-zero over only a finite interval of time, then we
suppose that the N +1 sampled points contain this interval. Or if h(t)
has an infinite range, then we at least suppose that the sampled points
cover a sufficient range to be representative of the behaviour of h(t) ]
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We therefore approximate the FT as

0 | k=N/2 |
H(f)=[h®)e™dt~ Y he™ A

k=—N/2

Since we are sampling h(¢) at N +1 discrete timesteps, in view of the
symmetry of the FT and inverse FT it makes sense also to compute H(f)
only at a set of N +1 discrete frequencies:

n
=—, n=—N 2,...,0,...,N 2
fo= / /

(The frequency f. =1/2A is known as the Nyquist (critical) frequency
and it is a very important value. We discuss its significance later).
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Discrete Fourier Transform of the 7,

Then /

kN2 kN2
H(fn) ~ thesz"tkA — A the27nkn/N
k=—N/2 k= —N/2
Note that e_mn — e”in

Hence, there are only N independent values.
Also, note that e27zzkn/N _ eZmn+27zzkn/N — e27zm(N+k)/N

So we can re-define the Discrete FT as:

n
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k=0




The discrete /inverse FT, which recovers the set of h,'s from the set of
H's is

. —2rwikn/N

Parseval's theorem for discrete FTs takes the form

N-1 1 N-1

ﬁZ\Hn

n=0

2

]
=
N

I

There are also discrete analogues to the convolution and correlation
theorems.
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Fast Fourier Transforms

Consider again the formula for the discrete FT. We can write it as

N-1 N-1
2rwikn/ N k
H, =Y &Ny =N wokp,
k=0 k=0

This is a matrix equation: we compute the (Nx1) vector of H 's
by multiplying the (N xN) matrix [W”k] by the (N x1) vector of h,'s.

In general, this requires of order N* multiplications (and the h's
may be complex numbers).

e.g. suppose N =10° = N> =10". Even if a computer can perform
(say) 1 billion multiplications per second, it would still require more
than 115 days to calculate the FT.



Fortunately, there is a way around this problem.

Suppose (as we assumed before) N is an even number. Then we can write

=

-1 N/2-1 N/2-1
2rwikn/ N 2rwi(2j)n/ N 2ri(2j+)n/ N
H = e wikn hk _ Ze 7i(2))n hzj 4 Ze wi(2j+)n h2

n
0 =0 =0
| | | |

Even values of & Odd values of &

Jj+l1

bl
Il

<

M-1

e27zijn/Mh2j 4 Wn Z e27zijn/Mh

2j+1

m.
o

=0
where M =N/2

So we have turned an FT with N points into the weighted sum of two FTs
with N /2 points. This would reduce our computing time by a factor of two.



Why stop there, however?...

If M is also even, we can repeat the process and re-write the FTs of
length M as the weighted sum of two FTs of length M /2 .

If N isa power of two (e.g. 1024, 2048, 1048576 etc) then we can
repeat iteratively the process of splitting each longer FT into two FTs half
as long.

The final step in this iteration consists of computing FTs of length unity:

HO _ Z e27zik0hk — hO
k=0

i.e. the FT of each discretely sampled data value is just the data value itself.

A University e )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA




This iterative process converts O(Nz) multiplications into
O(Nlog, N) operations.

This notation means ‘of the order of’

Soour 10'° operations are reduced to about
2.7x10° operations.

(- )
Instead of 100 days of CPU time, we can perform the

FT in less than 3 seconds.
\_ Y,

The Fast Fourier Transform (FFT) has revolutionised our ability to tackle
problems in Fourier analysis on a desktop PC which would otherwise be
impractical, even on the largest supercomputers.

A University * )
O_f GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA




Data Acquisition

Earlier we approximated the continuous function /(¢) and its FT
H(f) byafinite set of N+1 discretely sampled values.

How good is this approximation?  The answer depends on the form of
h(t) and H(f). In this short section we will consider:

1.  under what conditions we can reconstruct /2(¢) and H(f)
exactly from a set of discretely sampled points?

2. what is the minimum sampling rate (or density, if & is a spatially
varying function) required to achieve this exact reconstruction?

3. what is the effect on our reconstructed #(¢f) and H(f) if our
data acquisition does not achieve this minimum sampling rate?
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The Nyguist - Shannon Sampling Theorem

Suppose the function A(¢) is bandwidth limited. This means that
the FT of A(¢) is non-zero over a finite range of frequencies.
i.e. there exists a critical frequency f such that

H(f)=0 foral |f|>f.

The Nyquist - Shannon Sampling Theorem (NSST) is a very important
result from information theory. It concerns the representation of /(%)
by a set of discretely sampled values

h, =h(t,) where 1 =FkA, k=..-2,-10,1,2,...
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The NSST states that, provided the sampling interval A satisfies

[ A:I/zfc] or less

then we can exactly reconstruct the function #4(f) from the discrete
samples {hk } It can be shown that

4 ™
RS sin[27 £.(¢ — kA)]
h(t) = Al;ohk 0 a)
\- y,

/. is also known as the Nyquist frequency and A'=2 /. is known as
the Nyquist rate.
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i

We can re-write this as

A < sin[ﬂ(t—kA)/A]
M= 20 k) ]

So the function /A(t) is the sum of the sampled values {hk} , weighted
by the normalised sinc function, scaled so that its zeroes lie at those

sampled values.

[
v
=
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Sampled values

University
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Normalised sinc function

sin(mx)

mr

sinc(x) =

(compare with previous section)

Note that when ¢ = k/A then
h(t)=h, since sinc(0)=1




The NSST is a very powerful result.

We can think of the interpolating sinc functions, centred on each sampled
point, as ‘filling in the gaps’ in our data. The remarkable fact is that they
do this job perfectly, provided h(t) is bandwidth limited. i.e. the
discrete sampling incurs no loss of information about A(¢) and H(f) .

Suppose, for example, that A(¢) = sin(zyzfct) . Then we need only
sample A(t) twice every period in order to be able to reconstruct
the entire function exactly.

(Note that formally we do need to sample an /nfinite number of
discretely spaced values, {hk} . If we only sample the {hk} over a
finite time interval, then our interpolated /4(¢) will be approximate).
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y =sin(27 f.t)
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2A=1/f.

Sampling A(t) at (infinitely many of) the red points is sufficient to
reconstruct the function for all values of ¢, with no loss of information.

Universit e
& Cison - SUB)
Qf angW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011




Aliasing

There is a downside, however.

If h(t) is not bandwidth limited (or, equivalently, if we don't sample
frequently enough - i.e. if the sampling rate A~ < 2f.) thenour
reconstruction of A(f) and H(f) is badly affected by aliasing.

This means that all of the power spectral density which lies outside the
range —f. < J <[, is spuriously moved /inside that range, so that the
FT H(f) of h(t) will be computed incorrectly from the discretely
sampled data.

Any frequency component outside the range (— 1. f. ) is falsely
translated ( aliased ) into that range.
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Consider ji(t) as shown.

Suppose h(t) is zero
outside the range T .

This means that H(f)
extends to + oo .

The contribution to the
true FT from outside the
range (-1/2A,1/2A) gets
aliased into this range,
appearing as a 'mirror
image'.

Thus, at [ = i1/2A our
computed value of H(f)

is equal to fwice the true

value.

h(¢) sampled at reqular intervals A

A
H(f)

aliased Fourier transform

&~ [true Fourler transform

From Numerical Recipes, Chapter 12.1



How do we combat aliasing?

o Enforce some chosen f e.qg. by filtering h(t) toremove the
high frequency components ‘ f ‘ > .. (Also known as anti-aliasing)

o Sample h(f) at ahigh enough rate A™' sothat A >2f. -ie.at
least two samples per cycle of the highest frequency present

To check for / eliminate aliasing without pre-filtering:
o Givenasampling interval A, compute f. =1/2A
o Check if discrete FT of /(f) is approaching zero as = fi

o If not, then frequencies outside the range (—1/2A,1/2A) are
probably being folded back into this range.

o Try increasing the sampling rate, and repeat...



O

And finally.... .
Mock Data Challenge
1000 (x,y) data pairs, y wl

generated from an unknown

model plus Gaussian noise.

Data posted on my.SUPA

Four-stage challenge: I A

Fit a linear model to these data, using ordinary least squares;

2. Compute Bayesian credible regions for the model parameters, using
a bivariate normal model for the likelihood function;

3. Write an MCMC code to sample from the posterior pdf of the model
parameters, and compare their sample estimates with the LS fits;

4. Carry out a Bayesian model comparison, calculating the posterior
odds ratio of a constant, linear and quadratic model.
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