
6. Advanced Numerical Methods

Part 1: Monte Carlo Methods

Part 2: Fourier Methods
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1. Uniform random numbers

Generating uniform random numbers, drawn 
from the pdf U[0,1], is fairly easy.  Any scientific 
Calculator will have a  RAN function…

Better examples of U[0,1] random 
number generators can be 
found in  Numerical Recipes.

http://www.numerical-recipes.com/
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6.1. Uniform random numbers

Generating uniform random numbers, drawn 
from the pdf U[0,1], is fairly easy.  Any scientific 
Calculator will have a  RAN function…

Better examples of U[0,1] random 
number generators can be 
found in  Numerical Recipes.

In what sense are they better?…

http://www.numerical-recipes.com/
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Algorithms only generate pseudo-random
numbers:   very long (deterministic) sequences of numbers which are 
approximately random  (i.e. no discernible pattern).

The better the RNG, the better it approximates  U[0,1] 



We can test pseudo-random numbers for randomness in several ways:

(a)   Histogram of sampled values.    
We can use hypothesis tests to see if the sample is consistent with the 
pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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We can use hypothesis tests to see if the sample is consistent with the 
pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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Assume the bin number counts are subject 
to Poisson fluctuations, so that pred2

ii n=σ

Note:  no. of degrees of freedom  = nbin – 1
since we know the total sample size. 



(b)   Correlations between neighbouring pseudo-random numbers
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Sequential patterns in the sampled values would show up as structure in the 
phase portraits – scatterplots of the  ith value against the  (i+1)th value etc.

(see Gregory, Chapter 5)
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(b)   Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the 
phase portraits – scatterplots of the  ith value against the  (i+1)th value etc.

We can compute the
Auto-correlation function

j is known as the Lag

If the sequence is uniformly random,  we expect  
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The procedure is similar to changing
variables in integration.

Let                              be  monotonic

Then 

)(xyy =

)(~ xpx

dxxpdyyp )()( =

Probability of number 
between  y and  y+dy Probability of number 

between  x and  x+dx

dxdy
yxpyp ))(()( =

Because probability 
must be positive

6.2. Variable transformations

Generating random numbers from other 
pdfs can be done by transforming random 
numbers drawn from simpler pdfs. 

Suppose, e.g.



We can extend the expression given previously to the case where 
is not monotonic, by calculating

so that
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Example 1
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Example 2

Numerical recipes provides a program to turn                    into

Suppose we want

We define                                                    so that

Now

so
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Variable transformation formula also the basis for ‘error propagation’
formulae we use in data analysis  - see also SUPAIDA course



Question 13: If                        and                    , the 

pdf of        is                
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Suppose we can compute the CDF of
some desired random variable

6.3.     Probability integral transform

One particular variable transformation merits special attention.
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1) Sample a random variable

2) Compute         such that                       i.e.

]1,0[~ Uy

)(1 yPx −=)(xPy =x
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1) Sample a random variable

2) Compute         such that                       i.e.

]1,0[~ Uy

)(1 yPx −=)(xPy =x
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1) Sample a random variable

2) Compute         such that                       i.e.

3) Then                            i.e.        is drawn from the pdf
corresponding to the cdf

]1,0[~ Uy

)(1 yPx −=)(xPy =x

)(~ xpx x
)(xP
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Example (from Gregory)
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)(1 xp

)(2 xp

6.4.     Rejection sampling

Suppose we want to sample from 
some pdf and we know that )(1 xp

xxpxp ∀< )()( 21

1) Sample       from

2) Sample 
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(Suppose we have an ‘easy’ way to do this)
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6.4.     Rejection sampling

Suppose we want to sample from 
some pdf and we know that )(1 xp
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3) If ACCEPT

otherwise  REJECT

)(1 xpy <

(Suppose we have an ‘easy’ way to do this)
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6.4.     Rejection sampling

Suppose we want to sample from 
some pdf and we know that )(1 xp

xxpxp ∀< )()( 21

1) Sample       from

2) Sample 

)(2 xp

)](,0[~ 12 xpUy
1x

1x

y

3) If ACCEPT

otherwise  REJECT

)(1 xpy <

(Suppose we have an ‘easy’ way to do this)

Set of accepted values 
are a sample from 

{ }ix
)(1 xp

(following Mackay)
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Method can be very slow if the shaded region is too large.

Ideally we want to find a pdf that is:    (a)  easy to sample from

(b) close to

6.4.     Rejection sampling

)(1 xp

)(2 xp

)(2 xp

)(1 xp
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6.5.   Genetic Algorithms

(Charbonneau 1995)
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see  http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html

6.5.   Genetic Algorithms
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see  http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html

6.5.   Genetic Algorithms
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6.6.     Markov Chain Monte Carlo

This is a very powerful, new  (at least in astronomy!)  method for sampling 
from pdfs.  (These can be complicated and/or of high dimension).

MCMC widely used e.g. in cosmology to determine ‘maximum likelihood’
model to CMBR data.

Angular power spectrum of CMBR temperature fluctuations

ML cosmological model, 
depending on 7 different 
parameters.

(Hinshaw et al 2006)



Consider a 2-D example  (e.g. bivariate normal distribution);
Likelihood function depends on parameters  a and  b.

Suppose we are trying to find the
maximum of

1) Start off at some randomly
chosen value

2) Compute                and gradient

3) Move in direction of steepest
+ve gradient – i.e.                 is
increasing fastest

4) Repeat from step 2 until              converges on maximum of likelihood 
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OK for finding maximum, but not for generating a sample from
or for determining errors on the the ML parameter estimates. 



a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
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a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
1. Sample random initial point

P1

P1 =  ( a1 , b1 )
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a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
1. Sample random initial point

2. Centre a new pdf,  Q,  called the
proposal density,  on

P1

P1

P1 =  ( a1 , b1 )
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a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
1. Sample random initial point

2. Centre a new pdf,  Q,  called the
proposal density,  on

3. Sample tentative new point        
from  Q

P1 P’

P1

P’ =  ( a’ , b’ )

P1 =  ( a1 , b1 )
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a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
1. Sample random initial point

2. Centre a new pdf,  Q,  called the
proposal density,  on

3. Sample tentative new point        
from  Q

4. Compute 

P1 P’

P1

P’ =  ( a’ , b’ )
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P1 =  ( a1 , b1 )
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5. If R > 1   this means        is  uphill from      . 

We  accept as the next point in our chain,  i.e.

6. If   R < 1   this means        is  downhill from      .

In this case we  may reject        as our next point.

In fact,  we accept          with probability  R . 

P’ P1

P’ P2 =  P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number   x  ~  U[0,1]

(b)  If  x < R  then accept         and set

(c)  If  x > R  then reject          and set

P’ P2 =  P’

P’ P2 =  P1
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5. If R > 1   this means        is  uphill from      . 

We  accept as the next point in our chain,  i.e.

6. If   R < 1   this means        is  downhill from      .

In this case we  may reject        as our next point.

In fact,  we accept          with probability  R . 

P’ P1

P’ P2 =  P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number   x  ~  U[0,1]

(b)  If  x < R  then accept         and set

(c)  If  x > R  then reject          and set

P’ P2 =  P’

P’ P2 =  P1

Acceptance probability depends only on the previous point  - Markov Chain



So the Metropolis Algorithm generally  (but not always)  moves uphill, 
towards the peak of the Likelihood Function.

Remarkable facts

Sequence of points

represents a sample from the LF                  (see notes on website)

Sequence for each coordinate, e.g.

samples the  marginalised likelihood  of

We can make a histogram of

and use it to compute the mean and variance of         ( i.e.

to attach an error bar to      )  

{                        }

{                        }P1 , P2 , P3 , P4 , P5 , …

L(a,b)

a1 , a2 , a3 , a4 , a5 , …

a

{                          }a1 , a2 , a3 , a4 , a5 , … , an

a

a
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Why is this so useful?…

Suppose our LF was a 1-D Gaussian.  We could estimate the mean and 
variance quite well from a histogram of e.g. 1000 samples.

But what if our problem is,
e.g. 7 dimensional?

‘Exhaustive’ sampling could
require  (1000)7 samples!

MCMC provides a short-cut.

To compute a new point in our
Markov Chain we need to compute
the LF.   But the computational cost does not grow so dramatically as we 
increase the number of dimensions of our problem.

This lets us tackle problems that would be impossible by ‘normal’ sampling.
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Example:  CMBR constraints from WMAP 3 year data  ( + 1 year data)

Angular power spectrum of CMBR temperature fluctuations

ML cosmological model, 
depending on 7 different 
parameters.

(Hinshaw et al 2006)

SUPA Advanced Data Analysis Course, Jan 5th – 6th 2011



Question 14: When applying the Metropolis algorithm, if the width 

of the proposal density is very small                

A the Markov Chain will move around the parameter 
space very slowly

B the Markov Chain will converge very quickly to the 
true pdf

C the acceptance rate of proposed steps in the Markov 
Chain will be very small

D most steps in the Markov Chain will explore regions of 
very low probability  



Question 14: When applying the Metropolis algorithm, if the width 

of the proposal density is very small                

A the Markov Chain will move around the parameter 
space very slowly

B the Markov Chain will converge very quickly to the 
true pdf

C the acceptance rate of proposed steps in the Markov 
Chain will be very small

D most steps in the Markov Chain will explore regions of 
very low probability  



A number of factors can improve the performance of the Metropolis 
algorithm, including:

• using parameters in the likelihood function which are (close to) 
independent  (i.e. their Fisher matrix is approx. diagonal).

• adopting a judicious choice of proposal density, well matched to the 
shape of the likelihood function.

• using a  simulated annealing approach – i.e. sampling from a modified 
posterior likelihood function of the form

for large      the modified likelihood is a flatter version of the 
true likelihood 
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Temperature parameter      starts out large, so that the acceptance 
rate for ‘downhill’ steps is high – search is essentially random.

(This helps to avoid getting stuck in local maxima) 

is gradually reduced as the chain evolves,  so that ‘downhill’ steps 
become increasingly disfavoured.

In some versions, the evolution of       is carried out automatically –
this is known as  adaptive simulated annealing.

See, for example,  Numerical Recipes Section 10.9, or 
Gregory Chapter 11, for more details.

T

T

T

SUPA Advanced Data Analysis Course, Jan 5th – 6th 2011



A related idea is  parallel tempering  (see e.g. Gregory, Chap 12)

Series of MCMC chains, with different                ,   set off in parallel,
with a certain probability of swapping parameter states between 
chains.

High temperature chains are effective at mapping out the global 
structure of the likelihood surface.

Low temperature chains are effective at mapping out the shape of
local likelihood maxima.

T1=β
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Example:  spectral line fitting, from Section 3.

Conventional MCMC MCMC with parallel tempering
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Example:  spectral line fitting, from Section 3.

Conventional MCMC MCMC with parallel tempering
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θθθ dMpM )|(),|p(dataEvidence ∫=

Average likelihood, weighted by prior

• Calculating the evidence can be computationally very costly
(e.g. CMBR      spectrum in cosmology)

• How to proceed?...

1. Information criteria (Liddle 2004, 2007)

2. Laplace and Savage-Dickey approximations
(Trotta 2005)

3. Nested sampling (Skilling 2004, 2006;  http://www.inference.phy.cam.ac.uk/bayesys/ )
(Mukherjee et al. 2005, 2007; Sivia 2006)

lC

Approximating the Evidence
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Nested Sampling  (Skilling 2004, 2006; Mukherjee et al 2005, 2007)

Key idea:

We can rewrite the Evidence as

where   X is a 1-D variable known as the  prior mass 
uniformly distributed on [0,1]

θθθ dMpM )|(),|p(dataEvidence ∫=

dX),|p(dataEvidence ∫= Mθ

∫==
1

0

dX)(Evidence XLZ
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Skilling (2006)

∫==
1

0

dX)(Evidence XLZ

Example:  2-D Likelihood function
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Example:  2-D Likelihood function        (from Mackay 2005)

• Contours of constant likelihood,  L

• Each contour encloses a different
fraction,  X, of the area of the
square

• Each point in the plane has an
associated value of  L and  X

However, mapping systematically 
the relationship between  L and   
X everywhere may be computationally very costly
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However, mapping systematically the relationship between  
L and  X everywhere may be computationally very costly
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Skilling (2006)

Approximation procedure
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Skilling (2006)
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7. Advanced Numerical Methods

Part 1: Monte Carlo Methods

Part 2: Fourier Methods
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Part 2:   Fourier Methods

In many diverse fields physical data is collected or analysed as Fourier 
components.

In this section we briefly discuss the mathematics of Fourier series 
and Fourier transforms.

1.  Fourier Series

Any ‘well-behaved’ function              can be
expanded in terms of an infinite sum of sines
and cosines.  The expansion takes the form:

Joseph Fourier
(1768-1830)
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The Fourier coefficients are given by the formulae:

These formulae follow from the  orthogonality properties of sin and cos:
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Some examples from Mathworld, approximating functions with a finite number of Fourier series terms



“Fourier's Theorem is not only one of the most beautiful
results of modern analysis, but it is said to furnish an 
indispensable instrument in the treatment of nearly  
every recondite question in modern physics”

The Fourier series can also be written in complex form:

where

and recall that

∑
∞

−∞=

=
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inx
neAxf )(

∫
−

−=
π

ππ
dxexfA inx

n )(
2
1

nxinxeinx sincos +=

nxinxe inx sincos −=−



The Fourier transform can be thought of simply as extending the idea of a 
Fourier series from an infinite sum over discrete, integer Fourier modes to 
an infinite integral over continuous Fourier modes.

Consider, for example, a physical process that is varying in the time domain,
i.e. it is described by some function of time         .

Alternatively we can describe the physical process in the  frequency domain 
by defining the Fourier Transform function             .

It is useful to think of           and             as two different representations 
of the same function;  the information they convey about the underlying 
physical process should be equivalent.

)(th

Fourier Transform:  Basic Definition

)( fH

)(th )( fH
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We define the Fourier transform as

and the corresponding inverse Fourier transform as

If time is measured in seconds then frequency is measured in cycles per 
second, or Hertz. 

∫
∞

∞−

= dtethfH tifπ2)()(

∫
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−= dfefHth tifπ2)()(
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In many physical applications it is common to define the frequency domain 
behaviour of the function in terms of  angular frequency

This changes the previous relations accordingly:

Thus the symmetry of the previous expressions is broken.

fπω 2=

∫
∞

∞−

= dtethH tiωπω 2)()(

∫
∞
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−= ωω
π

ωπ deHth ti2)(
2
1)(
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Fourier Transform:  Further properties

The FT is a  linear operation:  

(1) the FT of the sum of two functions is equal to the sum of their FTs
(2) the FT of a constant times a function is equal to the constant times the 

FT of the function.

If the time domain function           is a real function, then its FT is complex.

However, more generally we can consider the case where          is also a 
complex function – i.e. we can write

may also possess certain symmetries:   even function

odd function

)(th

)(th

)()()( tihthth IR +=

Real part Imaginary part

)(th )()( thth −=

)()( thth −−=



The following properties then hold:

Note that in the above table a star  (*)  denotes the  complex conjugate, 

i.e. if     z  =  x  +  i y then     z*  =  x  − i y

See Numerical Recipes, Section 12.0
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For convenience we will denote the FT pair by

It is then straightforward to show that

)()( fHth ⇔

)(1)( afH
a

ath ⇔ “time scaling”

)()(1 fbHbth
b

⇔ “frequency scaling”

02
0 )()( tfiefHtth π⇔−

“frequency scaling”

“time shifting”

)()( 0
2 0 ffHeth tfi −⇔− π
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Suppose we have two functions             and

Their  convolution is defined as

We can prove the  Convolution Theorem

i.e. the FT of the convolution of the two functions is equal to the product 
of their individual FTs.

Also their  correlation, which is also a function of  t ,  is defined as 

)(tg )(th

( ) ∫
∞

∞−

−=∗ dssthsgthg )()()(

( ) )()()( fHfGthg ⇔∗

∫
∞

∞−

+= dsshtsghg )()(),(Corr

Known as the  lag
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We can prove the  Correlation Theorem

i.e. the FT of the first time domain function, multiplied by the complex 
conjugate of the FT of the second time domain function, is equal to the 
FT of their correlation.

The correlation of a function with itself is called the  auto-correlation

In this case

The function                    is known as the  power spectral density,  or 
(more loosely)  as the  power spectrum.

Hence, the power spectrum is equal to the Fourier Transform of the 
auto-correlation function for the time domain function 

)()(),(Corr fHfGhg ∗⇔

2)(),(Corr fGgg ⇔

2)( fG

)(tg
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The power spectral density

The power spectral density is analogous to the pdf we defined in previous 
sections.

In order to know how much power is contained in a given interval of 
frequency, we need to integrate the power spectral density over that 
interval.

The  total power in a signal is the same, regardless of whether we 
measure it in the time domain or the frequency domain:

∫ ∫
∞

∞

∞

∞

=≡
- -

22PowerTotal dfH(f)dth(t)

Parseval’s Theorem
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Often we will want to know how much power is contained in a frequency 
interval without distinguishing between positive and negative values.

In this case we define the  one-sided power spectral density:

And

When            is a real function

With the proper normalisation, the total power (i.e. the integrated area 
under the relevant curve) is the same regardless of whether we are 
working with the time domain signal, the power spectral density or the 
one-sided power spectral density. 

∞<≤−+≡ ffHfHfPh 0)()()( 22

∫
∞

≡
0

)(PowerTotal dffPh

)(th 2)(2)( fHfPh ≡



From Numerical Recipes,
Chapter 12.0

Time domain 

One-sided PSD 

Two-sided PSD 
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The sinc function occurs frequently in 
many areas of physics

The function has a maximum at 
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for positive integer  m
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i.e. the FT of a Gaussian function in the time domain is  also a Gaussian in 
the frequency domain.

(6) ( )22exp)( tath −=

t0

⇔
f0

( )222 /exp)( affH π−∝
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Question 15: If the variance of a Gaussian is doubled in the time 

domain

A the variance of its Fourier transform will be doubled in 
the frequency domain

B the variance of its Fourier transform will be halved in 
the frequency domain

C the standard deviation of its Fourier transform will be 
doubled in the frequency domain

D the standard deviation of its Fourier transform will be 
halved in the frequency domain  



Question 15: If the variance of a Gaussian is doubled in the time 

domain

A the variance of its Fourier transform will be doubled in 
the frequency domain

B the variance of its Fourier transform will be halved in 
the frequency domain

C the standard deviation of its Fourier transform will be 
doubled in the frequency domain

D the standard deviation of its Fourier transform will be 
halved in the frequency domain  



i.e. the FT of a Gaussian function in the time domain is  also a Gaussian in 
the frequency domain.

The broader the Gaussian is in the time domain, then the narrower the 
Gaussian FT in the frequency domain, and vice versa.

(6) ( )22exp)( tath −=

t0

⇔
f0

( )222 /exp)( affH π−∝
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Although we have discussed FTs so far in the context of a continuous, 
analytic function,        ,  in many practical situations we must work instead 
with observational data which are sampled at a discrete set of times.

Suppose that we sample          in total             times at evenly spaced time 
intervals     , i.e.  (for      even)

[  If            is non-zero over only a finite interval of time, then we 
suppose that the             sampled points contain this interval.   Or if            
has an infinite range, then we at least suppose that the sampled points 
cover a sufficient range to be representative of the behaviour of          ].  

Discrete Fourier Transforms

)(th

)(th

2,...,0,...,2, NNkktk −=∆=)( kk thh ≡ where

1+N
∆

)(th
1+N )(th

)(th

N
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We therefore approximate the FT as

Since we are sampling          at            discrete timesteps,  in view of the 
symmetry of the FT and inverse FT  it makes sense also to compute      
only at a set of             discrete frequencies:

(The frequency                      is known as the  Nyquist (critical) frequency
and it is a very important value.  We discuss its significance later).
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Then

Note that

Hence, there are only       independent values.

Also, note that

So we can re-define the Discrete FT as:
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The discrete inverse FT, which recovers the set of          from the set of 
is

Parseval’s theorem for discrete FTs takes the form

There are also discrete analogues to the convolution and correlation 
theorems.   

s'kh
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Consider again the formula for the discrete FT.  We can write it as

This is a  matrix equation:   we compute the            vector of
by  multiplying the             matrix             by the       vector of        .

In general, this requires of order         multiplications  (and the         
may be complex numbers).    

e.g. suppose                                       .   Even if a computer can perform 
(say)  1 billion multiplications per second, it would still require more 
than  115 days to calculate the FT.            

Fast Fourier Transforms
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Fortunately, there is a way around this problem.

Suppose (as we assumed before)        is an even number.  Then we can write

where

So we have turned an FT with       points into the weighted sum of  two FTs
with            points.  This would reduce our computing time by a factor of two.    
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Why stop there, however?...

If        is also even, we can repeat the process and re-write the FTs of 
length         as the weighted sum of two FTs of length           .

If         is a   power of two (e.g. 1024, 2048, 1048576 etc)  then we can 
repeat iteratively the process of splitting each longer FT into two FTs half 
as long.   

The final step in this iteration consists of computing FTs of length unity:

i.e. the FT of each discretely sampled data value is just the data value itself.

M
M 2/M

…
…

N

0
0

02
0 hheH

k
k
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=

π
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This iterative process converts                 multiplications into                                 
operations.

So our           operations are reduced to about
operations.

Instead of 100 days of CPU time,  we can perform the 
FT in less than 3 seconds.

The Fast Fourier Transform (FFT) has revolutionised our ability to tackle 
problems in Fourier analysis on a desktop PC which would otherwise be 
impractical, even on the largest supercomputers.

)( 2NO
)log( 2 NNO

This notation means ‘of the order of’

1610
9107.2 ×
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Data Acquisition
Earlier we approximated the continuous function           and its FT   

by a finite set of             discretely sampled values.

How good is this approximation?     The answer depends on the form of
and            .    In this short section we will consider:

1. under what conditions we can reconstruct            and        
exactly from a set of discretely sampled points?

2. what is the minimum sampling rate (or density, if      is a spatially 
varying function)  required to achieve this exact reconstruction?

3. what is the effect on our reconstructed            and          if our 
data acquisition does  not achieve this minimum sampling rate?  

)(th
1+N)( fH

)( fH)(th

)(th )( fH

h

)(th )( fH

SUPA Advanced Data Analysis Course, Jan 5th – 6th 2011



The Nyquist – Shannon Sampling Theorem

Suppose the function            is  bandwidth limited.   This means that  
the FT of           is non-zero over a finite range of frequencies.

i.e.  there exists a  critical frequency such that

The  Nyquist – Shannon Sampling Theorem  (NSST) is a very important 
result from information theory.   It concerns the representation of            
by a set of discretely sampled values 

)(th

0)( =fH

)(th
)(th

cf

for all cff ≥

,...2,1,0,1,2...,, −−=∆= kktk)( kk thh ≡ where
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The  NSST  states that, provided the sampling interval        satisfies

then we can  exactly reconstruct the function            from the discrete 
samples          .    It can be shown that

is also known as the  Nyquist frequency  and                   is known as
the  Nyquist rate.

cf21=∆

∆
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( )[ ]
( )∑
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( )[ ]
( )[ ]∑

∞+

∞= ∆∆−
∆∆−

=
-k

sin)(
kt

kthth k π
πWe can re-write this as

So the function           is the sum of the sampled values      ,  weighted 
by the  normalised sinc function,  scaled so that its zeroes lie at those 
sampled values.  

)(th { }kh

Normalised sinc function

Sampled values

(compare with previous section)

( ) ∆∆−= ktx

si
nc

(x
)

Note that when                  then∆= kt
khth =)( since ( ) 10sinc =

SUPA Advanced Data Analysis Course, Jan 5th – 6th 2011



The NSST is a very powerful result.

We can think of the interpolating sinc functions, centred on each sampled 
point, as ‘filling in the gaps’ in our data.  The remarkable fact is that they 
do this job  perfectly,  provided           is bandwidth limited.    i.e. the 
discrete sampling incurs no loss of information about           and             .

(Note that formally we do need to sample an infinite number of 
discretely spaced values,          .   If we only sample the    over a 
finite time interval, then our interpolated          will be approximate).

)(th

{ }kh { }kh
)(th

)(th )( fH

Suppose, for example, that                             .   Then we need only 
sample           twice every period in order to be able to reconstruct 
the entire function exactly.

( )tfth cπ2sin)( =
)(th
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( )tfy cπ2sin=

tfx c=

Sampling            at (infinitely many of) the  red points is sufficient to 
reconstruct the function for all values of  t, with no loss of information.

)(th
cf12 =∆
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There is a downside, however.

If          is  not bandwidth limited   (or, equivalently,  if we don’t sample   
frequently enough – i.e.  if the sampling rate                    )  then our 
reconstruction of           and              is badly affected by  aliasing.

This means that all of the power spectral density which lies outside the 
range                            is spuriously moved inside that range, so that the 
FT             of            will be computed  incorrectly from the discretely 
sampled data.

Any frequency component outside the range                     is falsely 
translated  ( aliased )  into that range.  

)(th
cf21 <∆−

)(th )( fH

)( fH )(th
cc fff <<−

( )cc ff ,−

Aliasing
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Consider         as shown.

Suppose         is zero 

outside the range  T .

This means that               
extends to        .

The contribution to the 
true FT from outside the 
range                        gets 
aliased into this range, 
appearing as a ‘mirror 
image’.

Thus, at                     our 
computed value of               
is equal to  twice the true 
value.

)(th

)(th

)( fH
∞±

)(th sampled at regular intervals ∆

( )∆∆− 21,21

∆±= 21f
)( fH
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How do we combat aliasing?

o Enforce some chosen         e.g. by filtering to remove the 
high frequency components              .    (Also known as anti-aliasing)

o Sample           at a high enough rate          so that      - i.e. at 
least two samples per cycle of the highest frequency present

cf21 ≥∆−

cf )(th

1−∆)(th

cff >

To check for / eliminate aliasing  without pre-filtering:

o Given a sampling interval      ,  compute

o Check if discrete FT of            is approaching  zero as

o If  not, then frequencies outside the range                        are 
probably being folded back into this range.

o Try increasing the sampling rate, and repeat…

∆ ∆= 21limf

)(th limff →

( )∆∆− 21,21



And finally….
Mock Data Challenge

x

y1000 (x,y) data pairs, 
generated from an unknown 
model plus Gaussian noise.

Data posted on my.SUPA

Four-stage challenge:

1. Fit a linear model to these data, using ordinary least squares;

2. Compute Bayesian credible regions for the model parameters, using 
a bivariate normal model for the likelihood function;

3. Write an MCMC code to sample from the posterior pdf of the model 
parameters, and compare their sample estimates with the LS fits;

4. Carry out a Bayesian model comparison, calculating the posterior
odds ratio of a constant, linear and quadratic model.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


