1. Introduction and Theoretical Foundations

Reasonable thinking?...
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for the Physical Sciences through the development of theoretical models capable of explaining the

A Comparative Approach with

Mathematica Support existing observations as well as making testable predictions...Statistical

The goal of science is to unlock nature’s secrets...Our understanding comes

inference provides a means for assessing the plausibility of one or more
competing models, and estimating the model parameters and their
uncertainities. These topics are commonly referred to as “data analysis™.
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Reasonable thinking?. ..

"“A decision was wise, even though
it led to disastrous consequences,
if the evidence at hand indicated
it was the best one to make; and a
decision was foolish, even though
it led to the happiest possible
consequences, if it was

ﬁ{mm’lm"m[f unreasonable to expect those

consequences”
XX ]

Herodotus, ¢.500 BC
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Reasonable thinking?. ..

“A decision was wise, even though
it led to disastrous consequences,
if the evidence at hand indicated
it was the best one to make; and a
decision was foolish, even though
it led to the happiest possible
consequences, if it was
unreasonable to expect those
consequences”
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Herodotus, ¢.500 BC
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"Probability theory is nothing
but common sense reduced to
calculation”

THEORIE

ANALYTIQUE

DES PROBABILITES;

Pis M. LE COMTE LAPLACE,

Chancelier duBémout-Conservatsur, Grand-Oifcer do la Ligion AHonseur ;
Menibre do Mnstitut impérial et dn Burean: des Longitnden da France;
des Bocifids royales 3o Londres et de Gottingue; des Acodémies des
Scicoces de Busslo, dc D ck, o Subds, de Prusse, ds Hollande,
E'ltalie, eic.

Pierre-Simon Laplace
(1749 — 1827)

PARIS,

M* V© COURGIER, Insprimenr-Libraire pour fas Mathématiqave
quai des Angaatinn, 2 57, '
1813,
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Plausible reasoning?...

PREFACE

PHIL GREGORY

Bayesian Logical
Data Analysis
for the Physical Sciences through the development of theoretical models capable of explaining the

A Comparative Approach with

Mathematica Support existing observations as well as making testable predictions...Statistical

The goal of science is to unlock nature’s secrets...Our understanding comes

inference provides a means for assessing the plausibility of one or more
competing models, and estimating the model parameters and their
uncertainities. These topics are commonly referred to as “data analysis™.

COXFORD SCIENCE PUBLICATIONS

DATA
The most we can hope to do is to make the ANALYSIS

best inference based on the experimental data ABAYESIAN TUTORIAL
SECOND EDITION

and any prior knowledge that we have
with . SULUNG

available.

We need to think about the difference
between deductive and inductive logic
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Deductive logic
O

Cause 0 Effects or outcomes
(theory) (predictions of theory)
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Deductive logic

O
Cause 0 Effects or outcomes
(theory) (predictions of theory)
Inductive logic
Possible causes
(competing theories O Observations
or models) O
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Deductive logic

O
Cause 0 Effects or outcomes
(theory) (predictions of theory)
Inductive logic
Possible causes
(competing theories O Observations
or models) O

How do we decide which model is most plausible?

A University * )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA




Deductive logic

O
Cause 0 Effects or outcomes
(theory) (predictions of theory)
Inductive logic
O
Possible causes
(competing theories O Observations
or models) O

How do we decide which model is most plausible?
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An example of deductive logic

/Statement A: All red-haired students drink Irn Bru )

Statement B: Student X has red hair

Gtatement C: Student X drinks Irn Bru .
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An example of deductive logic

/Statement A: All red-haired students drink Irn Bru )

Statement B: Student X has red hair

Gtatement C: Student X drinks Irn Bru .

Let's suppose that A is true. (Our theory).

o If B istrue, then C is true

o If C isfalse, then B is false

University
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011



An example of deductive logic

/Statement A: All red-haired students drink Irn Bru )

Statement B: Student X has red hair

Gtatement C: Student X drinks Irn Bru .

Let's suppose that A is true. (Our theory).

o If B istrue, then C is true

o If C isfalse, then B is false

C is alogical consequence of A and B
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Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011



If we set 'true’' =1 and 'false’ = O, we can use the rules of
George Boole (1854) to carry out logical operations.

We define
. — , N
Negation: A A is false
Logical product: AB '‘both A and B are true’
Logical sum: A+B  'at least one of A or B is true
- J
Then
A(B+C) = AB+AC
A+AB = A
A+ A =1

A+BC = (A+B)( A+C)

AA = 0 etc
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An example of inductive logic

/Statement A: All red-haired students drink Irn Bru )

Statement B: Student X has red hair

\Statement C: Student X drinks Irn Bru .

What can we say about B if A and C are true?...

(Statement A didn't say that all students who drink
Irn Bru have red hair)
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Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011



An example of inductive logic

/Statement A: All red-haired students drink Irn Bru )

Statement B: Student X has red hair

\Statement C: Student X drinks Irn Bru .

What can we say about B if A and C are true?...

(Statement A didn't say that all students who drink
Irn Bru have red hair)

We might say, however

o If C istrue, then B is more plausible
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In the 1940s and 50s Cox, Polya and Jaynes formalised
the mathematics of inductive logic as plausible reasoning

® If we assign degrees of plausibility a real number between
O and 1, then the rules for combining and operating on
inductive logical statements are identical to those for
deductive logic — Boolean algebra.
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In the 1940s and 50s Cox, Polya and Jaynes formalised
the mathematics of inductive logic as plausible reasoning

® If we assign degrees of plausibility a real number between
O and 1, then the rules for combining and operating on
inductive logical statements are identical to those for
deductive logic — Boolean algebra.

Probability Theory

The Logic of Science

Ed Jaynes
(1922 - 1998)
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THEORIE

NALYTIQUE

DES PROBABILITES;

FPan M. LE COMTE LAPLAC

A Universit
of GlasgowY

Laplace (1812)

Mathematical framework for probability
as a basis for plausible reasoning:

Probability measures our degree of
belief that something is true
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THEORIE

NALYTIQUE

DES PROBABILITES;

Meubre Baresa i 5
des Bocidide royaler do ot da Gotalgue s dso Académios dos
Scivnces Budde,

dleatie, ote.

M University

of Glasgow

Laplace (1812)

Mathematical framework for probability
as a basis for plausible reasoning:

Probability measures our degree of
belief that something is true

Prob( X) = 1 = we are certain that
X 1s true

Prob( X) = 0 =  weare certain that
X 1s false
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Our degree of belief always depends on the
available background information:

“Probability that X is
true, given [”

We write Prob( X | 1)
N

\

Background information

Vertical line denotes conditional probability:

our state of knowledge about X is
conditioned by background info, /
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Rules for combining probabilities

p(X|D) + pX|I) = 1

X denotes the proposition that X is false

Note: the background information is the same
in both cases
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Rules for combining probabilities

p(X,Y[I) = pXI[Y,[)xp(Y|I)

X ,Y denotes the proposition that X and Y
are frue
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Rules for combining probabilities

p(X,Y[I) = pXI[Y,[)xp(Y|I)

X ,Y denotes the proposition that X and Y
are frue

p(X |Y,I) = Prob( X is true, given Y is true)

p(Y ‘ ]) = Prob( Y is true, irrespective of X))
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Also

p(Y,X[I) = p[X,[)xp(X|I)

but
pY,X|I) = p(X.,Y|[I)
Hence
N PXIY.Dxp(Y|])
pUIAD p(X D)

Unive rSitY .supy
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Bayes' theorem:

p(X|Y,[)xp(Y|I)
p(X | 1)

p(Y | X,I) =

Laplace rediscovered work of
Rev. Thomas Bayes (1763)

@esian Inference
Thomas Bayes

(1702 — 1761 AD)
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Bayes' theorem:

p(X Y, )x p(Y|T)

YIX,I) =
p(Y | X,I) DX 1)

p(data | model, /) x p(model | I)
p(data | [)

p(model |data, /) =

A University * )
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Bayes' theorem:

2V X.I) = pX|Y,DxpY|I)
p(X|[T1)
: Likelihood Prior
Posferlor \ /

- J
p(moéel data,7) = Z (data | model, /) x p(model | /)

p(de%ta | 1)
\

Evidence

A University ‘ )
O_f GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA



Bayes' theorem:

2V X.I) = pX|Y,DxpY|I)
p(X|[T1)
: Likelihood Prior
Posferlor \ /

- J
p(moéel data,7) = Z (data | model, /) x p(model| /)

p(de%ta | 1)

/ ;
Evidence

We can calculate these terms
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Bayes' theorem:

p(X|Y,[)xp(Y|I)
p(Y|X,I) =
p(X | 1)
Posterior Likelihood Prior
/ \ /
p(model |data,/) oc p(data|model,7)x p(model|7)
What we know now Inﬂ)useeIrI\C/Zt?ofr?sur Whaggsrlgnew
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Bayesian probability theory is simultaneously a very
old and a very young field:-

Old : original interpretation of Bernoulli, Bayes, Laplace...

Young: ‘state of the art’ in data analysis

But BPT was rejected for several centuries.
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Bayesian probability theory is simultaneously a very
old and a very young field:-

Old : original interpretation of Bernoulli, Bayes, Laplace...

Young: ‘state of the art’ in data analysis

But BPT was rejected for several centuries.

Probability = degree of belief was seen as too
subjective

!

Frequentist approach

’su@
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Probability = ‘long run relative frequency' of an event

in principle, it was thought, can be measured objectively

e.g. rolling a die. What is p(l) ?
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Probability = ‘long run relative frequency' of an event

in principle, it was thought, can be measured objectively

e.g. rolling a die. e What is p(l) ?
1

If die is 'fair' we expect p(1)=p(2)=...= p(6)= p

These probabilities are fixed (but unknown) numbers.

Can imagine rolling die M times.

Number rolled is a random variable - different outcome each time.
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Probability = ‘long run relative frequency' of an event

in principle, it was thought, can be measured objectively

e.g. rolling a die. e What is p(l) ?

If die is 'fair' we expect p(1)=p2)=...= p(6)=—

These probabilities are fixed (but unknown) numbers.

n()

We define p(1)= lim —= If p()=< dieis 'fair'

M —>o

Universit *
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Probability = ‘long run relative frequency' of an event

in principle, it was thought, can be measured objectively

e.g. rolling a die. e What is p(l) ?

If die is 'fair' we expect p(1)=p(2)=...= p(6)=—

These probabilities are fixed (but unknown) numbers.

But objectivity is an illusion:

n(l)

p(l) = A14im Y3 assumes each outcome equally likely
(i.e. equally probable)
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Probability = ‘long run relative frequency' of an event

in principle, it was thought, can be measured objectively

e.g. rolling a die. e What is p(l) ?
1

If die is 'fair' we expect p(1)=p(2)=...= p(6)= p

These probabilities are fixed (but unknown) numbers.

But objectivity is an illusion:

Also assumes infinite series of /dentical trials;

why can't probabilities change?
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Probability = ‘long run relative frequency' of an event

in principle, it was thought, can be measured objectively

e.g. rolling a die. e What is p(l) ?
1

If die is 'fair' we expect p(1)=p(2)=...= p(6)= p

These probabilities are fixed (but unknown) numbers.

But objectivity is an illusion:

What can we say about the fairness of the die after
(say) 5 rolls, or 10, or 100 ?
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In the frequentist approach, a lot of mathematical machinery is
defined to let us address this type of question. See later

n o= 100
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In the frequentist approach, a lot of mathematical machinery is
defined to let us address this type of question. See later

n = 100 n = 10000
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of
assighing probabilities - Bayesians worry about this toolll
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of
assighing probabilities - Bayesians worry about this tool!l

Probability /s subjective;
it depends on the available
information

Probability Theory

The Logic of Science

Ed Jaynes
(1922 - 1998)
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of
assighing probabilities - Bayesians worry about this tool!l

Probability /s subjective;
it depends on the available
information

Probability Theory

The Logic of Science

Subjective # arbitrary

Ed Jaynes
(1922 - 1598) Given the same background
information, two observers should
assign the same probabilities

A University * )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA



More Theoretical Foundations: Marginalisation

Suppose there are a set of M propositions {xk k= 1,...,M}

M
Then Zp(ka) = 1
k=1
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More Theoretical Foundations: Marginalisation

Suppose there are a set of M propositions {xk k= 1,...,M}

M
Then Zp(ka) = 1
k=1

Suppose we intfroduce some additional proposition Y

Use Bayes' theorem. px,y|)=p(x |y, )p(y|I)

Py, y | 1) =p(xy |y, Dp(y|1)
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More Theoretical Foundations: Marginalisation

Then Zp(xk,yll){Zp(xklyJ) p(y[I)
\ /
= 1
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More Theoretical Foundations: Marginalisation

Then Zp(xk,yll){Zp(xklyJ) p(y|1)
k=1 k=1
\ /
= 1
Marginal probability
\ M
p(y1D)=> p(x.,y|I)
k=1
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More Theoretical Foundations: Marginalisation

This extends to the continuum limit

x can take infinitely many values

p| D)= | p(x,y|I)dx
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More Theoretical Foundations: Marginalisation

This extends to the continuum limit

x can take infinitely many values

py | = | p(x.y|1)dx

p(x,y|1) isnolonger a probability, but a probability density

b
Prob(a<x<band yistrue|I) = [ p(x,y|l)dx

with obvious extension to continuum limit for y
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More Theoretical Foundations: Marginalisation

This extends to the continuum limit

x can take infinitely many values

p| D)= | p(x,y|I)dx

Also jp(x|y,])dx = 1

N\

Normalisation condition
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More Theoretical Foundations: Marginalisation

Probabilities are never negative, so p(x)>0 forall x

We compute probabilities by measuring
the area under the pdf curve, i.e.

p(x)
Prob(a<x<b) = jp(x)dx

‘Normalisation’ jp(x)dx =1
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Some important pdfs: Discrete case

1) Poisson pdf
e.g. number of photons / second counted by a detector,

number of galaxies / degree? counted by a survey

r = number of detections

Poisson pdf assumes detections are independent, and
there is a constant rate U
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&%) BBC News - The first glimpse of dark matter? - Mozilla Firefox
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The first glimpse of dark matter?
By Wictoria Gill
Science reporter, BBC Mews SEE ALSO
_ N » Signals could be from dark matter
us SC'E_nt'Sts }_"a""e reported the 01 Apr 09 | Science & Environment
FlEt_ECt'D" of signals that could v Cosmic crash unmasks dark matter
indicate the presence of dark 30 Aug 08 | Science & Environment
matter. v Giant black holes just got bigger
& team announced on Thursday 09 Jun 09 | Science & Environment
detecting two events with » Hubble makes 30 dark matter map
characteristics "consistent with" 07 Jan 07 | Science & Environment
\n\;jhatlph.ysmsts believe make up RELATED INTERMET LINKS
the elusive matter, + Fermilab
The rmain announcement came Pczrslf_n'?;afvt:g..n;ﬂhn;‘zkneiv”eﬂsrgDSt ot the v COMS
from the Department of Energy's v Soudan Underground Laboratory
Fermi Mational Acceleratar Laboratory near Chicago. ) :
The BEC is not responsible for the content of external
The scientists were keen to stress that they could not confirm that intermetisies
what they had seen was definitely dark matter.
TOP SCIEMCE 2 ENVIROMMENT STORIES
L ) . ) . o )
Whﬂe this result is cu.n5|sten_t with Flark matt.erJ it is also consistent v:Devil:cancarsourca identificd:
with backgrounds," said Fermilab's director, Pier Oddone.
y DMNA analysed from early European v
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Some important pdfs:  Discrete case

1) Poisson pdf
e.g. number of photons / second counted by a detector,

number of galaxies / degree? counted by a survey

; - pe”
¥ = number of detections p(r) = y

Poisson pdf assumes detections are independent, and
there is a constant rate U
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Some important pdfs:  Discrete case

1) Poisson pdf
e.g. number of photons / second counted by a detector,

number of galaxies / degree? counted by a survey

; - pe”
¥ = number of detections p(r) = )

Poisson pdf assumes detections are independent, and
there is a constant rate U

Can show that Z p(r)=1

r=0

University
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Some important pdfs:  Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a detector,

number of galaxies / degree? counted by a survey

p(r) .

Lo p(r) =

0.4

w o= 1.0

0.2
|
I

i o= 5.0

9

=]

0
Unuversity
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Some important pdfs:  Discrete case

2) Binomial pdf

number of 'successes' from N observations, for two mutually
exclusive outcomes (‘Heads' and 'Tails')

= number of 'successes'’

r
@ = probability of 'success' for single observation

Pv) = 10
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Some important pdfs:  Discrete case

2) Binomial pdf

number of 'successes' from N observations, for two mutually
exclusive outcomes (‘Heads' and 'Tails')

= number of 'successes'’

r
@ = probability of 'success' for single observation

Pv) = 10

Can show that Z py(r)=1
r=0
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Some important pdfs:  Continuous case

1 i g
) Uniform pdf bla a<x<b
p(x) = <
0 otherwise
p(x)
1
b-a |
0 a b "
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Some important pdfs:  Continuous case

2) Central, or normal pdf
(also known as Gaussian)

px) = ———exp —%’“”) = N(u,0)

02 04 06 08

0
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Cumulative distribution function (CDF)

P(a) = jp(x)dx = Prob(x<a)

P(x) |

04 06 038

0.2

L
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Question 1:  In the figures below, the blue curves show a normal
distribution with mean zero and o =1.

Which of the pink curves shows a normal
distribution with mean zero and =0.5 ?

p(z) p(z)
0.4 + 0.4
0.2 4 0.2
0 d z 0
3 2 1 0 1 2 3 3 2 1 0 1 2
p(z) p(z)
0.4 0.4
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-
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Question 1:  In the figures below, the blue curves show a normal
distribution with mean zero and o =1.

Which of the pink curves shows a normal
distribution with mean zero and =0.5 ?

p(z) p(z)
0.4 - 0.4 -
> k 0.2
T 0 T T 1 z r T T 0
3 -2 1 0 1 2 3 3 2 1 0 1 2
p(z) p(2)
0.4 - 0.4 -
- X
T G T T T 1 z f T T 0
3 -2 1 0 1 2 3 3 2 -1 0 1 2




Measures and moments of a pdf

The nth moment of a pdf is defined as:-

<xn> = i x"p(x|1) Discrete case
x=0
<x"> = Tx” p(x|1)dx Continuous case
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Measures and moments of a pdf

The 1st moment is called the mean or expectation value:

Bl = <x> = ixp(x\[) Discrete case
x=0

E(x) = <x> = jxp(x|])dx Continuous case

—00
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Measures and moments of a pdf

The 2nd moment is called the mean square:

<x2> — ixz p(x|1) Discrete case
x=0
<x2> = sz p(x|1)dx Continuous case
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Measures and moments of a pdf

The variance is defined as:

Var[x] = i (x = <x>)2 p(x| 1) Discrete case

Var[x] T(x = <x>)2 p(x|I)dx | Continuous case

and is often written as &’

a:\/g is called the standard deviation
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Measures and moments of a pdf

The variance is defined as:

Var[x] = i (x - <x>)2 p(x| 1) Discrete case

Var[x] = T(x—<x>)2 p(x|I)dx | Continuous case

In general

Var[x] = <x2>—<x>2

A University e )
Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA




Measures and moments of a pdf

pdf mean variance
. e’

Poisson  p(r) = — H H
Binomial v
) = a0 NG NO(1-0)
P ) = gl | dlavd) | fb-a)
Normal

B 1 1 (x—u ’ 2
P = ﬁwexp{ 2( - ” H O

University
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Measures and moments of a pdf

The Median divides the CDF into two equal halves

Xmed

P(x..,) = j p(x)dx' = 0.5

P(x) [

04 06 038

0.2

L
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Measures and moments of a pdf

The Median divides the CDF into two equal halves

Xmed

P(x..,) = j p(x)dx' = 0.5

P(x) [

04 06 038

0.2

L
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Measures and moments of a pdf

The Mode is the value of x for which the pdf is a maximum

p(x)
sk /
N o=0.5
ol / \,_/
-::_ / \
=t / \ o=1
E_ / \ /
/ \
- iq L
X= U
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Measures and moments of a pdf

The Mode is the value of x for which the pdf is a maximum

p(x)
sk /
N c=0.5
ol / \,_/
-::_ / \
E' / \ o=1
E_ / \ /
/ \
- 1
X= U

For a normal pdf, mean = median = mode = U
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Variance of a Function of a RV

The variance, var|f(x)], of an arbitrary function of x can be

approximated to second order by the following expression

var [f ( £X ) ] — var ( &L ) ( % ) T

This expression is the basis for the error propagation’
formulae we use in e.g. undergraduate physics labs

See also the SUPAIDA course

A University * )
O_f GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011 SUPA



-

Question 2:

Which expression correctly approximates the error
on the natural logarithm of a variable X ?



Question 2:  Which expression correctly approximates the error
on the natural logarithm of a variable X ?




Multivariate Distributions

Thus far we have considered only the pdf of a single (univariate)

RV. We now extend to the multivariate case of two or more RVs.

Joint pdf

The joint pdf of two RVs, 2y and x5 is p(z1,25). Then,
b1 pbo

Prob(a; < X7 < by and ag < Xo < ba) = / / pl(x1,72) drydrs
a1 a2

Extension to more than two RVs is carried out in the obvious way.

University
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Marginal Distributions

The marginal pdf, p1(x1) of 1 is defined by

pi(z1) = / p(x1, x2) dag

— 0

and is a pdf in the usual sense that
1. pi(xq) =0, for all x4
2. Prob(a <z <b) = ff p1(zy)dey

3. J2 pi(e)dey = 1

University
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Marginal Distributions

Similarly. the marginal pdf of x5 is

p2(2) = / pla1,w2) da

— XD

In general, given any multivariate pdf, we may find the marginal pdf

of any subset of the x4, .... 7, by integrating over all other variables.

e.g.
[ 9] [ 9]
p1s(z1.23) = / / p(x1,y oy ) drodaydrs...dxy,
— 00 — 00
A University * )
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Conditional Distributions

Consider the joint pdf, p(x1,x3), of r1 and x9. Suppose we observe
xr1, but do not observe 2. We want a function that describes the
pdf of xo, given the observed value of z1 (usually simply stated as
‘given x1’). This function is known as the conditional pdf of xs,

written as p(xo|xy), and defined by

p(mla :EZ)
p1(zr1)

plx2|ry)

i.e. the conditional pdf is obtained by dividing the joint pdf of a4

and xo by the marginal pdf of 1 (provided py(zq) # 0).

University
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Conditional Distributions

Similarly
p(ry,72)
p2(x2)

p(rilrz) =

Extension to more than 2 RVs is again straightforward. For exam-

ple,
p("T'l , 2, L3, T—l)

p2a(x2, 4)

p(mljﬂ"B‘j—‘-Z,m;l) b

A University e )
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Statistical Independence

If the conditional pdf of x5 given x4 does not depend on xq, this
means that x; and zo are statistically independent, since the ob-

served value of x5 is unaffected by the observed value of 7.

Equivalently, 1 and x5 are independent if and only if the joint pdf
of r1 and x5 can be written as the product of their marginal pdfs,

l.e.

[p(TL-TZ) = pl(-’t‘l)m(ﬂ‘z)}
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Question 3:  Which of the following joint pdfs describe variables
X and Yy which are statistically independent?

A p(x,y)oc%(x+y); 0<x,y<o
B p(x,y)cexpl-i(x+y); 0<xy<w
C p(xy)xcloglx+y); 0<x,y<w

D p(x,y)ocexp[—%(x—l—y)]; 0<x<y, 0<y<ow



Question 3:  Which of the following joint pdfs describe variables
X and Yy which are statistically independent?

A p(x,y)oci(x+y); 0<xy<o

B p(x,y)cexp-i(x+y); 0<x,y<o

C pxy)xlog(x+y); O<x,y<oo

D p(x,y)ocexp[—%(x+y)]; 0<x<y, 0<y<ow



The bivariate normal distribution

Let x and y be RVs with the following joint pdf

1 1
n(x,1 = exp | —— —(x.1
p( .. J) QWG'XJ}'\W I z(l _ p2) “2( J)

where the quadratic form, Q(x,y) is given by

_ T flxyo o T Y =y Y = Py o
- — 2
Qry) = (P 20 (R ¢ (U

Then p(x,y) is known as the bivariate normal pdf and is specified
by the 5 parameters fix, 1y, 0x, ov and p. This pdf is used often in
w© :r:f o

the physical sciences to model the joint pdf of two random variables.
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The bivariate normal distribution

p(x.y)

L
'i'i A
'1" ‘i
1 ‘;5
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The bivariate normal distribution

The first 4 parameters of the bivariate normal pdf are, in fact, equal

to the following expectation values:-
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The bivariate normal distribution

The parameter p is known as the correlation coefficient and

satisfies

[ El(x —px)(y — ny)] = poxoy }

Note that if p =0 then = and y are independent.

El(x — px)(y — py)] is known as the covariance of » and y and is

often denoted by cov(x,y).
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The bivariate normal distribution

The parameter p is known as the correlation coefficient and

satisfies

[ El(x — )y —py)] = poxoy }

Note that if p =0 then = and y are independent.

El(x — px)(y — py)] is known as the covariance of » and y and is

often denoted by cov(x,y).

In fact, for any two variables x and y, we define

[ cov(x,y) = Elx=E@))y-E))] }
L U » t -
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Isoprobability contours for Y] p=00 | Y] =03

the bivariate normal pdf

0 >0 : positive correlation

y tends to increase as x increases

0 <0 : negative correlation Y| p=05 | Y p=07
y tends to decrease as x increases
°r ] °r 1
X X
Y1 p=-07 Y1 p=09
Q) | 1 %
X X
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Isoprobability contours for Y] p=00 | Y] =03

the bivariate normal pdf

0 >0 : positive correlation

y tends to increase as x increases

0 <0 : negative correlation Y1 p=05 | Y] p=07

y tends to decrease as x increases | | 7

Contours become narrower and
steeper as

‘p‘—)l y»p=,—0.7 | | _ y_p;0.9

= stronger (anti) correlation -
between x and y. | @ - %
i.e. Given value of x, value of 7

y is tightly constrained. - : - = ; —

University

I Qf GlangW SUPA Advanced Data Analysis Course, Jan 5th — 6th 2011




The bivariate normal distribution
The marginal pdfs of  and y are just the univariate normal pdfs,
1.e.

Pr (T) = E\'T(rux: G'X) py(y) — A'T(#}f: J}f)

The conditional pdf of y given = is also a univariate normal pdf,

V1Z:-

T T+
plylr) = Niuy+2

X

p(x — pix), oy\/ 1 — p?)

with the corresponding expression for p(x|y).
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The bivariate normal distribution

[y + ;—‘ p(x — px) is often referred to as the conditional expecta-

tion (value) of y given z, and the equation

[ y =ty + 7p(z — puix) 1

is called the regression line of y on .

(see also Section 2)
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