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Introduction

An experimental science such as astronomy involves measuring many diverse types
of physical quantities (e.g. apparent magnitudes and diameters, colours, parallaxes,
wavelengths). These quantities can often, in turn, be used to infer the values of other
physical quantities which we cannot measure directly (e.g. luminosities, intrinsic
sizes, temperatures, distances, velocities). This inference process generally involves
making certain model assumptions. For example, to infer the distance of a star of a
given spectral type, we might assume that all stars of that spectral type have the
same absolute magnitude. We can then deduce the star’s distance by combining the

measured apparent magnitude with the assumed absolute magnitude.

The inference process is often made difficult because the physical quantities which
we observe cannot be measured with arbitrary precision. In addition, the model
assumptions which we make will only be valid to some given level of precision. For
example, stars of the same spectral type will not have exactly the same absolute
magnitude, and moreover the observed apparent magnitude of a given star will be
subject, at some level, to a measurement error. These two effects mean that our

inferred distance for the star will also be uncertain.

The aim of this course will be to develop the necessary tools to model the errors
and uncertainties which arise in this inference process. The theory which describes
the mathematical nature and behaviour of errors is known as probability theory.
The branch of mathematics which describes how errors affect the process of inferring
physical quantities from observational data is known as statistics. In Sections 1 and
2, we will study the ‘building blocks’ of probability and statistics respectively. In
Section 3 we will then discuss in detail how we can use statistics to test our physical
theories and determine, for example, which of two competing theories (or ‘models’) is
in better agreement with a particular set of observational data. We call this process
hypothesis testing. Finally in Section 4 we will consider a method of estimating
inferred quantities which is very widely used in the astronomy and astrophysics
literature (and indeed throughout the literature of almost any quantitative science);

the method of estimation based on confidence intervals.



SECTION 1 : Mathematical Building Blocks

1.1 : Probability

The theory of probability is a branch of pure mathematics. This means that we could
deduce laws and theorems which describe how to manipulate probabilities, starting
from a set of axioms — in a manner similar to the theory of arithmetic. Many
modern textbooks take this approach, since it allows the mathematical machinery
of measure theory to be directly applied.

The disadvantage to such an approach is that it is both abstract and complicated.
We will instead try to develop ideas about probability which are more intuitive.

(c.f. how we learn to count at school).

1.1.1 : Counting (combinatorial) Definition of Probability

Suppose we observe some event (e.g. a physical experiment) for which there are
a finite number, n, of possible outcomes. Suppose the outcomes can be grouped

together according to some well-defined attribute or characteristic. e.g.:-

Event example attributes
Tossing a coin head, tail
Throwing a dice 1, 2, 3, odd number, even number

Suppose that attribute A occurs in m of the n possible outcomes. Then we could
define the probability of an outcome having attribute A — which we write simply

as P(A) — as:-

P(A = =
(4) total number of outcomes

number of outcomes with attribute A m
n

For example, if a coin is equally likely to fall as a head or tail, we say that:-

P(head) = P(tail) = 1/2

1.1.2 : ‘Frequentist’ Definition of Probability

How do we ‘know’ from the outset that a coin is equally likely to fall as a head or

a tail? In truth we do not know this a priori, but our intuition might lead us to
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reason as follows. Suppose we toss the coin a large number of times and, in the long
run, the coin falls as a head half of the time and as a tail half of the time; we could
then regard a head and a tail as equally probable outcomes. This intuitive idea of
what happens to the coin when it is tossed a large number of times forms the basis

of what is known as the frequentist definition of probability.

More generally, suppose we perform an experiment N times. (This can be something
as simple as tossing a coin, or something as complex as measuring the Hubble

constant). We define the relative frequency of an outcome with attribute A; as:-

el freq. (4) = number of outcomes with attribute A;  n(A4;)
Sred) = total number of outcomes B N

We then define the probability of outcome A; as

n(A;)
N

P(4;) = lim as N — o0

Aside: Later in the course we will consider how to test e.g. whether a coin is fair (i.e.
P(head) = P(tail) = 1/2) by asking how close the experimentally determined ratio,
n(head)/N, should be to 1/2, for a given number of ‘experiments’, N, in order to
be confident that the coin is fair. We will see that we can never be absolutely
sure that the coin is fair, but statistics allows us to make quantitative statements
about how likely it is that the coin is fair. Here the assumption of a fair coin ais
an example of a hypothesis, which we can test by tossing the coin a large number
of times. Based on our accumulated data, we then decide to either accept or reject

the hypothesis of a fair coin.

Tossing a coin is an example of a simple event because there are only two possible
outcomes and these are mutually exclusive. Generally, however, we must deal with
events which are not simple, but rather are composite — i.e. combinations of two
or more simple events. Consider, for example, a pack of cards. (Assume that the

probability of drawing each card is 1/52). Three such composite events would be:-
e Probability of drawing an ace or a spade
e Probability of drawing an ace and a spade

e Probability of drawing an ace then a spade



To handle such events we need laws for combining probabilities. We will not prove
these, but justify them by counting arguments — essentially using our well-known
ideas about the intersection and union of sets.

1.1.3 : Law of Addition

Let X and Y be two different sets of outcomes of an experiment. Let X +Y denote
the set of outcomes which occur in either X or in Y, and XY the set of outcomes

which occur in both X and Y. Then
P(X+Y) = PX)+ PY) - PXY)

We can justify this equation by counting arguments. Suppose we carry out the
experiment N times. let n(X), n(Y), n(X +Y) and n(XY) denote the number of
elements in the sets X, Y, X +Y and XY respectively (c.f. Figure 1).

Figure 1: Venn diagram showing two intersecting sets of outcomes

X Y

XY

Simple counting gives
n(X+Y) = n(X) + nY) — n(XY)

Dividing by N and letting N — 0o, we obtain the law of addition. Thus, in order
to determine the probability that an outcome belongs to set X or set Y, we add the
probability that the outcome belongs to set X to the probability that it belongs to



set Y. But this means that we have counted twice those outcomes which belongs to

both X and Y, so we need to subtract, P(XY).

Ex: P(ace or spade) = P(ace) + P(spade) — P(ace and spade)
= 4/52+13/52 — 1/52
= 16/52 = 4/13

1.1.4 : Conditional Probability

Consider an experiment which is repeated n times — i.e. we have a total of n out-
comes. Let n; of these outcomes have some attribute A;, ny have another attribute

Ay and nqo have attributes A; and A,. Then,

P(4,) = % (strictly P(A;) = lim%, as N — c0)

Also
U]
P(Ay)) = —=
() = &
and
N2
P(Ajand Ay) = —
n
We can write this last equation as
P(Ajand 4,) = 2200 = M2 py))
n n 1

nia/ny is the relative frequency of those outcomes which have attribute A;, which

also have attribute A,.

In the limit as n; — 00, ni2/n is defined as the conditional probability of the
outcome having attribute As, given that it has attribute A;. It is usually written

as P(Ay|A,).
1.1.5 : Law of Multiplication
In the above notation
P(Ajand Ay) = P(A; As) = P(A;) P(As|A;) = P(A) P(A4|Ay)
Thus
P(A; Ay)

P(Ay)

which is often how conditional probabilities are defined in practice.

P(AQ‘AI) -



1.2 : Statistical Independence

Let X and Y denote two sets of outcomes of an experiment. In keeping with the

notation already introduced,
P(X) = Prob(outcome € X), P(Y) = Prob(outcome €Y')

P(XY) = Prob(outcome € X andY)

We then say that X and Y are independent sets of outcomes if and only if

P(XY) = P(X)P(Y)

We can justify this result as follows. If X and Y are independent, then knowledge
that the outcome belongs to X has no effect on the probability that the outcome
belongs to Y. This means that

P(Y|X) = P(Y)
But since for any X and Y we have
P(XY) = P(X)P(Y|X)
it follows that, for X and Y independent

P(XY) = P(X)P(Y)

This equation defines statistical independence.

Extension to more than two sets of outcomes is straightforward. For example:-
P(XYZ) = PX|YZ)P(YZ) =PX|YZ)P(Y|Z)P(2)
If X, Y and Z are independent, then

P(XYZ) = P(X)P(Y)P(Z)

The outcomes which we have considered so far have been qualitative (head, tail,
ace, spade etc). This is a useful means of introducing definitions of probability
and independence, but we now need a description of probability which deals with

quantitative outcomes.



1.3 : Probability Distributions

An observed event with several possible outcomes is called a random event. When
the outcome is a numerical quantity (e.g. a physical measurement such as length,

time, apparent magnitude, wavelength) it is called a random variable (RV).

1.3.1 : Discrete Probability Distributions

If a RV can take only a finite! number of values then it is a discrete RV. We can
associate with each possible outcome, r, a probability, p(r). The set of all p(r) is

called the probability distribution of the discrete random variable, 7.

1.3.2 : Poisson Distribution

A Poisson RV is a discrete RV describing, e.g., the number of photons counted in
a given time by a CCD. We denote the probability of counting r photons in time
interval ¢t by p(r,t), although some textbooks use the notation P,(¢). A Poisson RV
is defined by the following three postulates.

a The probability of an event occuring in time interval, ¢, is independent of the

past history of events prior to ¢

b For small interval, §t¢, there is an intrinsic rate, (i.e. number of events per
unit time) (> 0) such that the probability of a single event in §t, p(1,0t) =
uot + o(0t).

¢ The probability of two or more events happening at the same time is zero, i.e.

p(r, 6t) = o(dt), for all r > 2.
Here o(dt) represents any function such that o(dt)/dt — 0 as 6t — 0.

These postulates imply that the probability distribution function of a Poisson RV

takes the form

pt)"
p(r,t) = (r') e Mt

Lor countably infinite, although this mathematical subtlety need not concern us in this course



We can prove this result by induction; although this proof is not examinable, a short
summary is provided on a handout (see website). Note that
o

Zp(r’ t) — io (Ht!)’ e Ht — mnt io % _

r=0 r

as required, since r must take some value between 0 and oco. It is very often the
case that the time interval, ¢, is simply taken to be be unity, in which case we can

write

Figure 2 shows a plot of the Poisson distribution for several different values of pu.
Note that the shape of the PDF changes significantly with increasing p: for small
values of 1 the PDF is monotonic decreasing, whereas for larger values of u it takes

on more of a bell shape.

Figure 2: Poisson distribution, p(r), for different values of u
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Note that we could also define the Poisson RV in space — e.g. the probability of
finding r galaxies in a given volume or projected area of sky could be modelled as
a spatial Poisson RV. In that case, the rate parameter, u, would have dimensions
of inverse volume, or inverse area, instead of inverse time. We will consider another
common discrete probability distribution, the binomial distribution, later in the

course.
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1.3.3 : Continuous Distributions

Suppose a RV, X, can take any real value in a given interval — i.e. we have an
uncountably infinite number of possible outcomes. We call X a continuous RV.
Examples of continuous random variables include the apparent or absolute magni-
tude of stars or galaxies, distances, redshifts, orbital inclinations, etc. In fact, almost
all quantitative physical measurements in astronomy can be regarded as continuous

RVs.

Many textbooks denote a RV by a capital letter — often in bold face — and use the
corresponding small letter to denote a particular observed value, or realisation, of

the RV. Whenever convenient, we will adopt this notation.

What is P(X = z)? We have a potential paradox here. If we sum probabilities over

x, we would have
Y PX=1) =oc0 >1

if P(X = z) # 0 for an infinite number of values of x. Of course, a probability

cannot be greater than unity, far less equal to infinity!

This is simply telling us that the probability of X being ezactly equal to any fixed
value is zero. Instead we measure the probability of X lying in a small interval,

(z,z + dx). In the limit as dz — 0, we have
P(X € (r,z+dz)) = pz)dz

Here p(z) is known as the probability density function (PDF) but is NOT itself

a probability. In particular, we can certainly have p(z) > 1, but always

Thus the probability that X lies in the interval (a, b) is given by

Pla< X <b) /

In general we can always define a RV, X, on the entire real line, (—o0o0,00). We

simply define p(z) = 0 outside the range of physically meaningful values of z.
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1.3.4 : Cumulative Distribution Function

Consider a RV, X. The function
¢
P(t) = P(X < 1) = / p(z)dz
is called the cumuluative distribution function (CDF) of X. Thus the CDF
measures the probability that X takes a value less than ¢. Note that P(—o0) =

0, P(oo)=1.

1.3.5 : Examples of Continuous RVs

(1) Simplest example of a continuous RV is the uniform distribution, usually
denoted by U(a,b), defined on the interval (a,b), with a # b. The uniform
distribution has PDF

p(m)z{ 1/(b—a) a<z<b

0 otherwise
and CDF
0 r<a
Px)=¢ (z—a)/(b—a) a<z<b
1 z>b

These functions are shown in Figure 3.

Figure 3: PDF and CDF of the uniform RV, U(a, b)

PDF CDF
p(x) P(x)
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(2) The most important continuous RV is the normal, or Gaussian, distribution,

usually denoted by N(u, o). It has PDF

1 1

plz) = exp|

Y 2
5 552 (@~ H)’]

This is a bell-shaped curve, symmetrical about x = u. The parameter o is a

measure of the width of the PDF. There is no analytic form for the cdf of the

normal distribution, although it is often denoted by ®(¢). Thus

(1) = o [ explgig(e — ks

270 J—o0

The value of ®(t) is tabulated in many statistics textbooks, or in numerical
packages. The PDF and CDF of the normal distribution for several different
values of o is shown in Figure 4. Both the normal and uniform distributions

are very important for theoretical reasons, as we will see later.

Figure 4: PDF (a) and CDF (b) of the normal distribution for ¢ = 0.5
(dashed) and o = 1.0 (solid)

(a)

p(x) = PDF of x

P(x) = CDF of x
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How, in practice, do we determine the PDF of a RV? The most intuitive approach is
to make use of our ‘frequentist’ definition of probability. Suppose we make repeated
measurements of our physical quantity, i.e. we repeat our experiment a very large
number of times. We then record the measured values in a histogram, normalised so
that the total area under the histogram is equal to unity. In the limit as the number
of experimental ‘trials’ tends to infinity (and where the width of the histogram bins
tends to zero), the heights of the histogram bins (the ‘relative frequency’ of the
different outcomes) ‘traces out’ the PDF of the RV. This is illustrated for the simple
case of a RV uniform on the interval (0, 1) in Figure 5, below. (Here the sequence of
‘experiments’ have been generated on computer using a random number generator
program. Note that as the number of trials increases the histogram more accurately

approximates the ‘flat’ PDF.

Figure 5: Histogram approximations to a uniform RV, with PDF U(0, 1)
n = 100 n = 10000
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1.4 : Expectation and Other Measures of a Distribution

1.4.1 : Expected value

The expectation or expected value of a continuous RV, X, is defined as its
integral over the pdf of X. It is usually denoted by E(X). Thus

E(X) = / zp(x)dx
Similarly, the expected value of a discrete (e.g. Poisson) RV is defined by

E(X) = ) zp()

z=0
The expected value is also known as the mean, and is often written as T, or <z >.

1.4.2 : Median value

The median of a RV, X, is the value, x4, which divides the CDF into two equal

halves. Thus zneq satisfies

If the PDF is symmetric about the mean, then the mean and median are identical.

1.4.3 : Modal value

The mode of a RV, X, is the value of X at the maximum of the PDF. Thus z04e

satisfies
8p(x = xmode)
0x

Obviously the mode may not be uniquely defined. For example, for U(a, b), Op/0x =
0 for all z € (a,b).

=0

1.4.4 : Variance

The variance of X is defined as (for a continuous RV)

var(X) = /Oo (z —7)*p(x)dz

—00
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with the analogous expression for a discrete RV. The variance is usually denoted by

o?, while o0 = \ﬂOQ) is called the standard deviation.
For either continuous or discrete RVs the following equation holds
var(X) = E(X?) - [BX)P

(The proof of this result is left as an exercise).

1.4.5 : Examples

The following table summarises the mean value and the variance of the uniform and
normal distribution. (Proofs are left as an exercise; all results are quite straightfor-

ward to derive).

X p(z) E(X) var(X)
Poisson (’;).m e H 1 1
Uniform 1/(b—a) (@+b)/2| (b—a)?/12
Normal \/2170 exp[—53 (z — p)?] U o?

The next two measures of a distribution are particular expectation values.

1.4.6 : Skewness and Kurtosis

The (normalised) skewness of X, is defined by

skew(X) = E[(X —7)%/[var(X)]?

In a similar manner, the (normalised) kurtosis of X is defined by

kurt(X) = E[(X — 7)Y/ var(X)? — 3
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For a normally distributed RV skew(X) and kurt(X) are identically zero. The
measured skewness and kurtosis of a sample of real data is often used as a test
of whether those data are drawn from a normal distribution (see Section 2). If
skew(X) > 0 then the PDF of X is ‘positively’ lopsided. If kurt(X) > 0 then the
PDF of X has wider tails than a normally distributed RV (see Figure 6).

Figure 6: Examples of PDFs with positive skewness (a) and kurtosis (b). PDFs
are shown as solid curves; Gaussian distributions are shown as dashed curves for

comparison.

1.4.7 : Variance of a Function of a RV

The variance, var[f(X)], of an arbitrary function of X can be approximated to

second order by the following expression
2
var[f(X)] = var(X) (%)

This expression is often used to assign an error to a function of a random variable.
For example, suppose an experiment involves measuring a RV, X, but one wishes

to determine the variance of Y = X2. The above formula tells us that
var[Y] = var(X)[27]? = 4var(X)z?

(For a proof of this result, see handout on webpage). To determine the distribution

of Y we need to define a variable transformation.
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1.5 Variable Transformations

Let the RV X have pdf f(z) and let h(xz) denote some function of X. (e.g. if z is the
colour of a star, then h(z) could be the temperature). H = h(z) is itself a RV with pdf
g(h), say. How are f(z) and g(h) related? We have that

f(x)de = prob(z < X <z +dx)
and we require to find g(h) such that
g(h)dh = prob(h < H < h+ dh)

Suppose first that h(z) is one-to-one, i.e. £ maps to a unique h and vice versa. Hence the

inverse function z = z(h) exists, and we can write f as a function of h, i.e.

This function is not g(h), however, since we also have to transform the infinitesimal dz

(just as with changing variables in integration). Thus

dx

dr =
* dh

dh

where the modulus is required because probability is never negative. Combining the above

expressions:-
dr

f@yds = f@h) Glde = g(h)dh

If h(z) is not one-to-one then we must sum over all values of z for which h(z) = h, or

more precisely over the small intervals, dz;, corresponding to dh (see Figure 7). Thus
prob(h < H < h+dh) = prob(z; < z < z;+dz;)+prob(ze < z < ro+dzy)+prob(zs < z < z3+dzsz)+...

It then follows that

dr

a dh

zi(h)

g(h)dh = Y. flai(h)
h(z;)=h

18



Figure 7: Variable transformation when A is not one-to-one

hi(x)

dh

dx, dx, dx, dx, X

1.6 : Probability Integral Transform

One variable transformation merits special consideration. Suppose X has PDF f(z) and

CDF F(z). Define h(z) = F(z), which is one-to-one. Then:-

oWdh = fGn) |5 dn
— f(z(h) % "
)
Since h(z) = F(z), dh/dz = f(z). Thus
gyan = Da — 1

f(z)
i.e. the pdf of H is the uniform distribution, U(0, 1), (since 0 < F(z) < 1).
This important result shows that we can always transform the PDF of any RV into the
simple form of U(0,1), provided we know the CDF of the original RV. This approach

can be used in generating random numbers numerically (see e.g. Numerical Recipes, Chap

17.).
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1.7 : Multivariate Distributions

Thus far we have considered only the properties of distributions of a single (univariate)

RV. We now extend to the multivariate case of two or more RVs.

1.7.1 : Joint PDF
The joint PDF of two RVs, X; and X5 is p(z1,z2). Then,

b1 b2
PI‘Ob(G,l < X1 <b and a9 < X9 < bg) = / / p(wl,.’ﬂz) dzidxo
a1 as

Extension to more than two RVs is carried out in the obvious way.

1.7.2 : Marginal Distributions
The marginal PDF, p;(z1) of X; is defined by

pi(z1) = /00 p(z1,x2) dzo

—0oQ

and is a PDF in the usual sense that
1. pi(z1) >0, for all 2y
2. Prob(a < X1 <b) = f: p1(z1)dxy
3. [ pi(z)dzy = 1

Similarly, the marginal PDF of X5 is

o

pa(ze) = / p(z1,z2) d)

—00

In general, given any multivariate PDF, we may find the marginal PDF of any subset of

the X1, ..., X,, by integrating over all other variables. e.g.

o0 o0
pi3(x1,x3) = / / p(x1, .oy ) dxodzades...doy,
—00 —0o0

1.7.3 : Conditional Distributions

Consider the joint PDF, p(z1,z2), of X7 and X5. Suppose we observe X to have the value
x1, but do not observe Xo. We want a function that describes the PDF of X5, given that
X1 = z1 (usually simply stated as ‘given z1’). This function is known as the conditional

PDF of X,, written as p(z2|z1), and defined by
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p($17$2)
p1(z1)

i.e. the conditional PDF is obtained by dividing the joint PDF of X; and X5 by the

plzalz) =

marginal PDF of z; (provided p;(z1) # 0). Similarly

p(l'la 3)2)
P\T1|T2 = N
(z1]z2) 2(52)
Note that we can write
p(r1,z2) = plzi]z2)pa(z2)

= p(z2|z1)pi(z1)

This is known as Bayes’ formula.
Extension to more than 2 RVs is again straightforward. For example,

p(wla Z2,x3, :L‘4)
p24(T2,T4)

p(x1,3|T2, T4)

1.8 : Statistical Independence

If the conditional PDF of X5 given z1 does not depend on x1, this means that X; and X»
are statistically independent, since the observed value of X5 is unaffected by the observed

value of Xj.

Equivalently, X; and X5 are independent if and only if the joint PDF of X; and X5 can

be written as the product of their marginal PDFs, i.e.

p(z1,m2) = pi(z1) pa(z2)

Again, we extend in the obvious way. The RVs X1, ..., X;, are mutually independent if

and only if their joint PDF can be written as the product of their marginal pdfs. i.e.

p(z1, %2, ..y Tp) = p1(z1)p2(z2)...pn(zn)
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1.9 : The Bivariate Normal Distribution

Let X and Y be RVs with the following joint PDF

(2.1) 1 Q)
T, = exp |————5-Q(z,
Py dmoxog/1—p2 D 20— p2) oY
where the quadratic form, Q(z,y) is given by
T —p T — Y~ b y—p
Qlz,y) = (—)—2p( =)( L)+ ( )2
Ox Ox oy oy

Then p(z,y) is known as the bivariate normal PDF and is specified by the 5 parameters
Px; ty, Ox, 0y and p. This PDF is used often in astronomy to model the joint PDF of
two random variables. Figure 8, for example shows the joint distribution of apparent
magnitude and the logarithm of the 2lcm line width (denoted by P), which is often
modelled as a bivariate normal PDF in statistical studies of the Tully-Fisher distance

relation for spiral galaxies.

The first 4 parameters of the bivariate normal PDF are, in fact, equal to the following

expectation values:-
1. BE(X) = px
2. E(Y)=py
3. var(X) = o2
4. var(Y) = o7

The parameter p is known as the correlation coefficient and satisfies

BI(X —u)(Y )] = poxoy
Note that if p = 0 then X and Y are statistically independent.

E[(X — pux)(Y — py)] is known as the covariance of X and Y and is often denoted by
cov(X,Y).

The marginal PDFs of X and Y are just the univariate normal PDFs, i.e.

pz(z) = N(pix, 0x) py(y) = N(Nyaay)

The conditional PDF of Y given z is also a univariate normal PDF, viz:-
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g
plyle) = Nlpy + —p(x = pe)soy/1 - p?)

with the corresponding expression for p(z|y).

ty + g—ip(a: — jix) is often referred to as the conditional expectation (value) of Y given

z, and the equation
Yy = py + p(z — px)

is called the regression line of Y on X. We will say more about regression in Section 2.

Figure 8: The bivariate normal PDF
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The bivariate normal PDF (and indeed any bivariate distribution function) can be repre-
sented as a plot of isoprobability contours. These contour curves, closely analogous
to the contours on an OS map, denote those points on the (z,y) plane where the function
p(z,y) is constant. Examples of isoprobability contours for bivariate normal pdf’s with
different values of p, and the corresponding regression lines of Y on X for these pdf’s, are

shown on the handout provided on the website.
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SECTION 2 : Statistical Building Blocks

In Section 1 we considered various mathematical aspects of probability theory. We now

apply some of those mathematical tools to study the statistics of real data samples.

2.1 : The Sampling Distribution

Consider a RV, X, with pdf p(z). Suppose we observe n different realisations (values) of
X. We call the set {X1, ..., X;;} a random sample from the population with pdf p(z).
The joint pdf, g(x1, ..., Z,), is known as the sampling distribution of the random sample.
We can think of this joint pdf in terms of the ‘histogram’ picture which we discussed in
Section 1; i.e. if we were to repeatedly random sample sets of n numbers from the pdf,
p(z), and construct an n-dimensional histogram of the sampled values, then in the limit as
the number of samples tends to infinity the ‘shape’ of the histogram will approximate the
sampling distribution, g(z1, ..., ). In this course we will consider only random samples in
which all the elements are independently and identically distributed (usually written
as iid). This means that the sampled value of X = z; is independent of X = x5 and so
on. In other words, the elements of the random sample are statistically independent of

each other. It then follows that
g(T1,mzn) = p(r1)p(r2)--p(2T0)

i.e. the joint pdf of the random sample is product of the individual pdfs.

2.2 : Parameter Estimation

Suppose we wish to study a population which is known (or assumed) to have a pdf, p(z;0).
This notation indicates that the pdf is dependent upon a (possibly unknown) parameter,
0. If we observe a random sample from the population, {X1,..., X} say, how can we
estimate the parameter, #7 How do we decide how ‘good’ our estimate of € is (or even

what we mean by this question?).

2.2.1 : Statistics

A statistic is a function of observable random variables which does not depend upon
any unknown parameters. Thus if we have a random sample, {X1,..., X;}, from the
population with pdf p(z; ) then any function of {Xj, ..., X,,} which does not depend on

# is an example of a statistic.
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Suppose, for example, that X ~ N(u, o), where 4 and o are not known a priori. Then
X — 1 is not a statistic, since it depends on the value of the parameter, . The key idea

in parameter estimation is to use statistics to estimate the unknown parameters of a pdf.

2.2.2 : Estimators

A statistic with which we estimate the value of a parameter is known as an estimator of
that parameter. Estimators are usually denoted by a caret, or ‘hat’, e.g. 6 is an estimator

of 6.

Note that 6 is not a function of 0 (if it depended on the value of # then it would be
redundant as an estimator of #!). Note that 6 is, however, a RV since it is a function of
the RVs {X1, ..., X;;}. Hence we can (in principle, at least) determine the pdf of 6 in terms
of the sampling distribution, g(z1, ..., Z,). This means that the pdf of 6 depends upon the
true value of the parameter, §. We can therefore write the pdf of § as p(é; #), and we can

use the properties of p(é; 0) to decide whether 6 is a ‘good’ estimator.

Consider the following illustrative example. (We take an example from cosmology, al-
though similar examples from any other branch of astronomy could be presented, since it

is not the astronomical details but the statistical details which are important here).

Suppose we are measuring the redshift of a nearby galaxy in (say) the Virgo cluster. We
do this, of course, by identifying features in the spectrum of the galaxy and comparing
their wavelengths with the laboratory values. Thus, if we denote the true redshift of the
galaxy by zp, then an estimator of zy, denoted by 2, will be a function of the observed

wavelengths of the (n) identifying spectral features, i.e.
2 = 30, An)

Since the sampling distribution of Ay, ..., A, depends on zy, the pdf of Z also depends on
20, i.e. p(2) = p(2; 20)-

We could measure the redshift using, e.g., a 1m-class ground based telescope with a low-
resolution spectrograph, but with these data our determination of the redshift will be
somewhat inaccurate (since our measured wavelengths of the identifying spectral features
will be imprecise). Thus, if we were to repeat our observations with such a telescope a large
number of times, a histogram of our estimated redshifts would tend in shape towards the
pdf of 21, shown in Figure 9. In simple terms, we would say that our observation carried

a large statistical error but small systematic error.

Suppose now we observe the same galaxy with e.g. the high-resolution spectrograph on
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HST, and denote by 2z our HST estimator of z5. With HST our wavelength measurements
of the galaxy’s spectral features will now be much more accurate, leading to a much
narrower range of values (i.e. realisations) of Zo, if we were to repeat our HST observations
a large number of times. Suppose, however, that — for some reason — we mis-identify the
features in the galaxy’s spectrum, leading to a completely erroneous value of 29 in each of
these realisations (although, of course, we would only know this if we knew the true value
of 2zp). In this case the pdf of Z; would be as shown in Figure 9, and in simple terms we
would say that our observation carried a small statistical error but a large systematic

error.

Figure 9: PDF of two estimators of the true redshift, zg, of a galaxy.
p(Zlzp)

| > 7z

We see from Figure 9 that p(21;2p) is much broader than p(29;2g), so there is a higher
probability that 2; will differ considerably from z, than for 2,. However, there is, at
least, a non-negligible probability that 2; lies very close to zgp, whereas the ‘narrowness’ of
p(22; z0) means that 2o will almost always systematically underestimate the true red-
shift. These two extremes illustrate the essential difficulty in defining one single criterion
which determines which estimator is ‘best’ in a given situation. If one wishes specifically
to exclude large statistical errors, but is prepared to tolerate a small systematic ‘offset’
in the estimator of the parameter (particularly if it is possible to determine the size of
that offset, perhaps from independent data, and thus correct for it), then 25 would be

the better choice. If, on the other hand, even a small systematic error is unacceptable,
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then Z9 would have to be regarded as a ‘bad’ estimator. In this example we have used the

‘closeness’ of Z; and 25 to zy as a measure of which estimator is better. We can formalise

this idea of ‘closeness’ of an estimator to the true value of the parameter as follows:-

2.2.3 : Bias of an estimator

We define the bias, B(é; o), of an estimator, 0, by

B(6;60) =  E(6;00) - 6o
= /(9—90)17(9;9)619

where 6y is the true value of the parameter §. Hence, when an estimator is unbiased its

expected value is equal to the true value of the parameter.

2.2.4 : Risk of an estimator

We define the risk, R(é; o), of an estimator, 6, by
R(6;60) = E [(9 — 60)%; 90)]

= /(é — 60)* p(6;6) df

The risk of an estimator is also known as the mean squared error. Note that when an

estimator is unbiased then the risk is identically equal to the variance of the estimator.

In the example of Figure 9, 2; is an unbiased estimator with a large risk (and variance),

whereas Z, is negatively biased, but has smaller risk (and very small variance).

Note that the bias of 2, is itself a function of zy. This fact indicates two fundamental

difficulties:-

o If we apply a correction to remove the bias of 25 at zg it does not follow in general that
this correction will leave Z5 unbiased for all true values of z; indeed the correction

may increase the bias of the estimator for other true redshifts.

e In any case, to completely remove the bias of Z at z; strictly speaking we need
to already know the value of zy — if we knew that, then we would have no need to

estimate the parameter!

27



Fortunately, in practice one can frequently define estimators which are unbiased for a
wide range of, or indeed all, values of the unknown parameter, so that in particular we
don’t need to know the true value of the unknown parameter to know that its estimator

is unbiased. The simplest example of such an estimator is the sample mean.

2.2.5 : The sample mean

Let {X1, ..., X} denote a random sample drawn from a population with pdf p(z), mean

value p and finite variance o2. We define the sample mean as

Clearly i is an estimator. If each X; is independently and identically distributed (iid),
then (i is an unbiased estimator of u, for all values of u. (For proof of this result see

handout and lectures).

The variance, 0/21’ of the sample mean is given by

=d%/n

2
i

(For proof of this result see the handout: this proof is not examinable)

This result is extremely important in statistics, since it implies that, whatever the un-
derlying population (provided it has finite variance) the distribution of the sample mean
becomes increasingly concentrated near the population mean as the sample size increases.
Thus, the larger the sample, the more sure we can be that 4 is a good estimator of p.

This idea is formalised quantitatively in the law of large numbers.

2.2.6 : The law of large numbers

Let p(z;u,0%) be the pdf of a RV, X, with mean, u, and finite variance, o2. Let i be
the sample mean of a random sample of size n drawn from p(z;pu,02). Let € and & be
two specified small numbers such that e > 0 and 0 < § < 1. If n is any integer such that
n > o2 /€25, then

Prob[|g —pul<e] > 1-90

Thus, we can make the probability that i lies within e of u arbitrarily close to unity,
simply by taking a large enough sample of data.The proof of this theorem is, again, non-

examinable, but is provided on a handout for completeness.
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What is striking about the law of large numbers is the fact that we made no assumptions
about the form of the pdf of X (apart from its finite variance), and yet we can still make

precise statements about the probable ‘closeness’ of i and u for a given sample size.

In fact, we can go much further than this in determining the properties of the sample

mean, by using one of the most important theorems in statistics.

2.2.7 : The Central Limit Theorem

Let p(z; u,0?) denote a pdf with mean p and finite variance o2. Let 2 denote the sample
mean of the iid random sample {X1,..., X;,}, of size n. Then as n — oo, the pdf of j

approaches a normal pdf with mean value y and variance o2 /n.

We will not prove the central limit theorem in this course. We do, however, highlight
its importance. The CLT states that, no matter what pdf our random sample is drawn
from, the sample mean will have an approximately normal distribution as the sample
size increases. The CLT justifies the importance of the normal distribution — in applied
statistics in general, and in astronomy in particular. Astronomy is filled with situations
where one ‘bins’ or groups sets of observational data. The CLT tells us that, when we
bin data with a sufficiently large sample, the fluctuations in the average of the binned
data will look approximately normally distributed. Figure 10 illustrates this, for random
samples drawn from an exponential distribution — i.e. the underlying pdf is very different
from a normal pdf, and yet the distribution of the sample mean very closely approximates

a normal pdf as the sample size increases.

The sample mean is, thus, defined according to an intuitively simple expression, is un-
biased, and has very special asymptotic properties which are almost independent of the
pdf of the underlying population. This is rarely the case with other parameters of a pdf,
however, and we require in statistics more general methods for finding estimators — meth-
ods which take account of the form of the underlying pdf from which our sample data are

drawn.
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Figure 10: Histograms of the sample mean of sample of size n drawn from an exponential
distribution, for n = 10, n = 20, n = 40 and n = 100. Note the increasingly close

approximation to a normal distribution.
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2.3 Principle of Maximum Likelihood

Suppose we have a random sample, {X1,..., X}, drawn from the population with pdf
p(z; 0). We define the likelihood function, L(0), as the sampling distribution, g(x1, ..., Z,;0),
of {X1,...,Xn}, but now considered as a function of 6. In other words we are now thinking

of @ not as a fixed parameter, but as a variable. Thus,

L®) = g(z1,..yz0;0)

The principle of maximum likelihood essentially states that forming the likelihood function
is a useful way to define a ‘good’ estimator of the parameter §. The maximum likelihood
estimator of #, denoted by 6., is the value of # which maximises L(0). Thus, Onir, satisfies

g—s =0 when 6= éML
We can think of this definition in the following way. Suppose the particular values observed
in our random sample are {z1,...,z,}. If we were to vary the parameter, #, we would
generate a family of different pdfs. Onir, is the value of 6 corresponding to the pdf from

which it is ‘most likely’ that the actual sample was drawn.

Note that if the {X;} are iid, then

L) = p(z1;0)p(z2;0) ... p(zn;0)

We extend to the case where the pdf is a function of several unknown parameters in the

obvious way

AL (01, ..., 0k)

a0, =0 when 6, = éj (j=1,...,k)

For an iid random sample, {Xi,..., Xy}, from a normal pdf, the maximum likelihood

estimators of the mean, y, and variance, o2, are

N 1 . 1 & .
BML = — sz o, = — Z[$i — i ]?
n - n -
=1 =1

i.e. simply the sample mean and variance. These results are derived on the accompanying
handout and in the lectures. We already know from the preceding section that the sample
mean is an unbiased estimator. What about 6%;;? After a great deal of rather tedious
(and non-examinable! But see the handout anyway if you want to follow the details of the

derivation) algebra, we can show that

n—1
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i.e. the sample variance is a biased estimator of ¢?. In fact, for any pdf with finite

variance, we have:-

E

2
1 & 1 & n—1
—E (331'——2.771')]: 02
n “ n “ n
=1 =1

but we can easily define an unbiased estimator of ¢ by multiplying the sample variance

by n/(n — 1), i.e.

n 1 n
~ ~ 2 ~
Uzorr = 1 Z (xz - NML) = Z.’IIZQ — nu%,[L
! i=1

n—1
satisfies

corr

E [62 ] = o’
Why is 62,,, biased? If the mean, p, were known a priori, then one can show that
E|=Y (zi—p)’| =0
"=
i.e. in this case the sample variance is unbiased. It is because in practice we also have to

estimate p that principle of maximum likelihood gives a biased estimator of 2.

2.4 : Least Squares Estimators

We now turn to another useful method for estimating parameters — the principle of least
squares — which is particularly useful in astronomy where we often try to fit a simple
functional relationship between two or more sets of observational data. To fix our ideas
we will develop the theory of least squares in the context of a specific astronomical example:

the period-luminosity (PL) relation for Cepheid variables.

2.4.1 : Preamble — The Cepheid PL relation

Cepheids are highly luminous pulsating stars whose pulsation period has been found to

be related to their luminosity by a power law, i.e.
L = AP
where A and b are constants. The relation is usually considered in terms of magnitudes,
ie.
M = a+ blogP
The usefulness of Cepheids derives from the fact that their periods can be measured
directly, thus allowing us to infer their absolute magnitude, and hence their distance via

the familiar equation:-

m = M + 5logr + 25
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It is the step of inferring the absolute magnitude from the measured period which concerns
us here, and which requires the application of statistical techniques. This is because, in
practice, any group of Cepheids will not satisfy exactly the above linear relation between
M and log P. If we plotted the ‘observed’ values of { M;, log P;} for a sample of Cepheids we
would expect the points to be scattered on the plane, due to a combination of observational
errors in the measurement of M; (which is, in any case, not measured directly but would
itself have to be inferred from the measured apparent magnitude of the Cepheid combined
with some independent estimate of its distance) and log P;, and intrinsic errors due to
the inadequacy of the linear relation which we are assuming holds between these two
quantities (recall the discussion in the introduction). Figure 11 shows the Cepheid PL
relations derived for calibrating data in the LMC and SMC at a series of wavelengths
from B to K. (In fact these plots show the apparent magnitude of the Cepheids, which is
directly observed, but since the LMC and SMC Cepheids can all be assumed equidistant
these apparent magnitudes are equivalent to absolute magnitudes, as is easily seen from

the distance modulus formula above.)

As can be seen, these data clearly display a linear relationship but there is indeed a
non-negligible scatter in the relation, so that — at a given period, there is a range, or
distribution, of absolute magnitudes consistent with that period. But in order to use the
PL relation to estimate the distance of a more remote Cepheid, we want to assign a single
value of M to the star. In other words we want to fit a straight line (or more generally,
a curve) through the {M;,log P;} scatterplot so that we have a one-to-one relationship

between the observed (log) period and the inferred absolute magnitude.

We want this straight line to be the one which, in some sense, is the ‘best fit’ to the data
—i.e. we want the observed data points (which we refer to as our ‘calibrating data’) to lie
‘closest’ to the best fit line. The principle of least squares provides us with a definition of
what we mean by ‘closest’ in this context. We also want a means of quantifying whether
the scatter of the data about this best fit straight line (what we call the residuals of the
best fit) is consistent with our assumption of a straight line model in the first place. If
a plot of our PL calibrating data looked like Figure 12, for example, then common sense
would tell us that a straight line model was inappropriate. Statistics provides us with a
means of quantifying this degree of ‘inappropriateness’ — what we call the goodness of

fit.
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Figure 11: PL relations for Cepheids in the LMC and SMC.

Log P
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Figure 12: Data for which a straight line model is not appropriate.

2.4.2 : Ordinary Linear Least Squares

Suppose that the scatter in our plot of {M;,log P;} is assumed to arise from errors in
only one of the two variables. This case is called Ordinary Least Squares. In the
context of the PL relation, it is probably reasonable to assume that there is no error on
the measured period of a Cepheid, or at least that this error is very small compared with
the uncertainty on the absolute magnitude. We then call log period the independent
variable, and absolute magnitude the dependent variable. Thus we suppose that we

can write, for each Cepheid:-
M; = a+ blogP;+e¢;

where ¢; is known as the residual of the i Cepheid — i.e. the difference between the

observed value of M;, and the value predicted by the best-fit straight line (see Figure 13).

We assume that the {¢;} are an iid random sample from some underlying pdf with mean

2

zero and variance o” — i.e. the residuals are equally likely to be positive or negative and

all have equal variance.

The principle of least squares says that one should adopt as the best fit estimators of

a and b the values which minimise the sum of the squared residuals, S = 3" €2. Thus

S = Z [M; — (a + blog P;)]?
i=1
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and & and b are obtained by differentiating S with respect to a and b, setting the resulting

equations (called the normal equations) equal to zero, and solving for a and b.

Figure 13: Schematic diagram indicating residuals of data points in the {M;,log P;}

plane.

T log P

In general, if we write the linear relation as
Y, = a+bX,+¢

where X is the independent variable and Y; as the dependent variable, the least squares

estimators of ¢ and b minimise

n
S = > lyi—(a+bx)
i=1
and ars and I;Ls satisfy
0S . aS .
%:O when a = apg %:O when b= brg

Solving these equations, arg and brs are given by

X Yy X — Dy DT

ars =

nyz? - (Tzi)
b — NI YiTi — D Yi 2T
Ls =

nyaf — (Ca)
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where n denotes the sample size and all summations are for ¢ = 1,...,n. If the residuals
are drawn from a normal pdf then it is straightforward to show that the least squares

estimators are also maximum likelihood estimators (see lectures).

It can also be shown that aps and ars are unbiased estimators of a and b respectively.

The variance of a1,s and by, is given by

, o Y a3
W)= e e
7
2
var(brs) = on

nyz? — (L)’

We can use these formulae to assign an error (i.e. by taking the square root of the
variance) to the least squares fitted slope and intercept. In general, dr,s and br.s will not
be statistically independent. This means that they have non-zero covariance. (Recall
that we defined in Section 1.9 the covariance of two random variables, X and Y, as
cov(X,Y) = E[(X — Z)(Y —7)], and it follows that cov(X,Y) = 0 if X and Y are
independent). In fact,

—o? Y
nya? — (Cm)

cov(ars,brs) =

2.4.3 : Weighted Least Squares

A common situation met in astronomy (and indeed in all the physical sciences) is where
one can model the relationship between bivariate data as a straight line, but it is not
reasonable to assume that the residuals are all drawn from the same pdf. In particular,
it is often the case that the residuals each have a different variance. For example, in the
case of the Cepheid PL relation, shorter period Cepheids are — on average — less luminous,
which could mean that the uncertainty on the measured apparent magnitude would be
larger than that for longer period Cepheids. Equally, it could be the case that the intrinsic
scatter (as opposed to the scatter due to observational errors) about the assumed straight
line relation is a function of the independent variable; this situation has recently been
suggested for the Tully-Fisher relation, which is a straight line relationship between the
absolute magnitude (dependent variable) and log rotation velocity (independent variable)

for spiral galaxies. Thus, in such cases, the i** residual, {¢;}, is assumed to be drawn from
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some underlying pdf with mean zero and variance o7, where the variance is allowed to be

different for each residual.

If the residuals are not identically distributed, this will affect the best-fit straight line
relation derived for a given set of data. One must ‘weight’ the least squares solution
to take account of the different variance on each residual, since the residuals with large
variance should have less influence on determining the best-fit parameters. We call such
a procedure weighted least squares. We can find weighted least squares estimators of
a and b in a similar fashion to that for ordinary least squares, but with a modified sum of
squares function, S, given by
s=y [t

which yields the solution

awLs =

~ n g~
bwiLs = 5

(2)

where as before all summations are for ¢ = 1,...,n. The variance of awrs and bwrs is

given by

2

x
. 25k

var(awws) = — 3
1 T2 .
4vd - (o3)

1
257

var(I;WLS) =

(3)

In the case where o7 is constant, for all 4, these formulae reduce to those given in Section

2.4.2 for the unweighted case.
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2.4.4 : Least Squares and Linear Regression

In the case of a bivariate normal distribution we saw in section 1.9 that the conditional
distribution of Y given z, denoted p(y|z), was a normal distribution with mean value which
was a linear function of . In other words if we consider the conditional expectation
value of Y given z, denoted by E(Y |z), as we vary z, this conditional expectation defines
a straight line in the {z,y} plane. We call this straight line the linear regression or
regression line of Y on X. It can be shown that this regression line is identical to the
best-fit straight line obtained by an ordinary least squares fit to the {z;,y;} data, so that
in this sense least squares and linear regression are equivalent. In fact, this equivalence
holds not only for a bivariate normal distribution, but any bivariate distribution for which

the conditional expectation of Y given z is a linear function of x.

2.4.5 : Extending Ordinary Least Squares

The simple formulation of ordinary least squares considered in this course can be extended
in several different ways. For example, one can express the dependent variable as a linear
function of two or more independent variables (e.g. for the Cepheid PL relation we can
include a term which depends on the colour of a Cepheid; we call this the PLC relation).
This extension is known as multilinear least squares or multilinear regression and
can be formulated quite neatly — and completely generally — in terms of vectors and

matrices. We do not consider multilinear least squares in this course, however.

One can also modify the assumptions of ordinary least squares by accounting for errors,
or residuals, on both variables (e.g. for the Cepheid PL relation one could allow for an
uncertainty on the measured period). This means that one has to modify the form of
the sum of squares function S, which has to be minimised with respect to the unknown
parameters of the best-fit straight line. The details of this generalisation to errors on both
variables are quite straightforward in principle, but are algebraically rather messy and we

do not attempt them here.
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2.5 : Goodness of Fit

We have shown how to obtain (ordinary) least squares estimators of the slope and intercept
of the best-fit straight line. We must still ask how good is our linear model in the first
place; i.e. we can obtain the best-fit straight line but this may still be a very poor fit to
the data.

How can we test if our model is a good one? Answering this question is tantamount
to determining whether the residuals of the data are, indeed, drawn from the assumed

2

distribution — i.e. a pdf with mean zero and variance o2 (or o2 in the case of weighted

least squares). The true residuals are, in fact, unknown, since they are given by
€ = Y —a —bx;

and the true values of the parameters a and b are, of course, unknown. We can estimate
the residuals, however, in the obvious way simply by replacing a and b in the above formula

by their least squares estimators, i.e.

~

€& = Y — ars —brLsw;

and ask whether these estimated residuals are consistent with our model assumptions.
This provides us with a means of assessing whether the linear model is a good one in the

first place.

Our assumptions are known as our hypothesis, and we test this hypothesis when we test
how well our data fit our model. We call such a hypothesis test a goodness of fit test.

(We will consider more general hypothesis tests in the next section).

2.5.1 : The x? statistic

We can test how well the data fits the linear model using the x? statistic. For the simple

case of one independent variable this is defined as

n N ~ 2
2 = Z lyz’ — ars .— bsti]

i=1 gi

where 01-2 is the variance of the i** residual and is assumed known a priori. In other words,

x? is the sum of the squared residuals, weighted by their variance.

Note that we must know the o2 a priori; if we don’t then we can say nothing about the

goodness of fit of the data to the model (see Figure 14 below).
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If the residuals are distributed as N (0, ;) then the statistic given above has the x? pdf,

given by
2 2\¥/2 _y22 2
P = o (x*) " e X 20

Here v is known as the number of degrees of freedom of the pdf. The mean value of

the pdf is v and the variance is 2v.

For a sample size of n, the x? statistic has v = n — 2 degrees of freedom: the number
of degrees of freedom is smaller than n because the statistic is formed not from the true
(and unknown) residuals, but from their estimates — i.e. we do not know the true values
of a and b and must replace them by their least squares estimators when forming the 2

statistic.

2.5.2 : Using x? to measure goodness of fit

We use tables of the cumulative distribution function of the x? RV in order to determine
whether the hypothesis that the data are well described by the linear model is justified?. If
the value of the x? statistic is found to be excessively large, or excessively small, compared

to its expected value, then we reject our hypothesis and seek a better model.

How does this work in practice? Tables tell us the value of the xy? RV for which a certain
percentage of the pdf lies to the left of that value (we call this a percentile of the CDF).

For example:-
Xa995 = value of ¢ for which Prob(x? < t) = 0.995 = 32.8 for v = 15

X590 = value of t for which Prob(x? < ¢) =0.90 = 9.24 forv =15

Thus we require to carry out the following steps to determine the goodness of fit for our

linear model, Y = a + bX.

1. Using the real data and the formulae of Section 2.4, determine the least squares

estimators of a and b.

2. Using these estimators of @ and b, and the (assumed known) variance, o7, of each

residual, calculated the observed value of the x? statistic, i.e.

n ~ 8 2
2 Yi — aLs — 0LsZ;
Xobs = Z l ]

i=1 gi

2Nowadays it is also common to use statistical packages on computer to determine the per-

centiles, rather than consulting tables
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3. For the appropriate number of degrees of freedom (in this case v = n — 2, since we
have two unknown parameters that we must replace with their estimators), compare
X2 With various percentiles of the x? CDF, in order to determine how likely it is
that one would obtain as large a value of x2, . (or indeed larger) if the linear model

were correct.

4. Make a decision to accept or reject the hypothesis of a linear model, based on

how likely X2, is found to be.

Figure 14 shows how changing the size of the o;, and hence changing the value of X2,
changes our interpretation of the goodness of fit of the same observed data to a linear
model. In the left hand panel, the errors are sufficiently small (and hence the value of
ngs sufficiently large) to indicate that a linear model is a poor model for the data — i.e.
we need to consider a curve. In the right hand panel, conversely, the errors are so large
(and hence the value of x2,, so small) that the best-fit straight line is consistent with
the data, but so too are many other straight line fits, and indeed other model curves. We
need more or better data to tell if the linear model is the most appropriate. In the central
panel, the errors are of a size consistent with our hypothesis, as borne out by a value of
X2, Which is close to the expected value for that number of degrees of freedom, and so

we conclude that the linear model is a good one.

Figure 14: Best linear fits, with different o; and different x?, for the same data.
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2.6 : Fitting General Models

We can apply the x? goodness of fit test more generally than just to fit straight line
relations. Suppose we have a physical model for the functional relationship between some

variable, Y and another variable, X, i.e.

del — del
yZ{no € = ymo € (xi;Hl, ...,9]9)

where the 0; are unknown parameters of the model. Suppose we now observe {yobs: i =

1,...,n}, where we suppose that

obs model
Yi = Y + €

where €; ~ N(0, 0;), for all i, and the ¢; are mutually independent.

Suppose we obtain least squares estimators, 91, ...,ék, of the parameters of the model?.

Then, if our model is correct, it follows that

obs model ] 2

n

)i i
X2 _ l % ‘

=1

aj
has a x? distribution with n — k degrees of freedom.

If the residuals are nmot normally distributed then we can still construct a statistic with an

obs

approximately x? distribution by first binning the data. The average value of 3°° in each

model for that bin, will have a residual which is approximately

bin, when compared to y
normal due to the Central Limit Theorem. The ‘closeness’ to normality depends on the
original pdf of the residuals and the number of points in each of the bins. Usually if this

number exceeds about 15 then the approximation to normality is quite adequate.

3the details of how we do this in practice need not concern us in this course. For a general
model it is often not possible to write down the analytic expression for the least squares estimators,
in the same way as for the linear model, but there exist computer packages for determining the

least squares estimators numerically in the general non-linear case.
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SECTION 3 : Hypothesis Tests

The goodness of fit tests which we introduced in the previous section using the y? statistic
were an example of a hypothesis test. In this section we now consider hypothesis tests

more generally.

3.1 : Simple Hypothesis Tests

A simple hypothesis test is one where we test a null hypothesis, denoted by H;
(say), against an alternative hypothesis, denoted by Hs — i.e. the test consists of only
two competing hypotheses. We construct a test statistic, ¢, and based on the value of ¢

observed for our real data we make one of the following two decisions:-

1. accept Hi, and reject Ho

2. accept Ho, and reject Hy

As an example of a simple hypothesis test, let X be a RV drawn from a normal pdf with
variance equal to unity and mean value equal to y, where it is known that either y = 2
or u = —2. Let our test statistic be simply ¢ = z, the observed value of X in a random

sample of size one. Let our null and alternative hypotheses be:-
H: p=-2 Hy : p=2

(Note that we could equal have chosen the null hypothesis to be H; : p = 2. The choice
of which is the null and which is the alternative hypothesis — abbreviated as NH and AH —
is basically up to the experimenter). Figure 15 shows the distribution of the test statistic,

t, under the NH and AH specified above.

To carry out the hypothesis test we choose the critical region for the test statistic, ¢.
This is the set of values of ¢ for which we will choose to reject the null hypothesis and
accept the alternative hypothesis. The region for which we accept the null hypothesis
is known as the acceptance region. Note that we must choose the critical region and
acceptance region ourselves. For example we might choose the critical region as the set
of values of ¢ for which ¢ > 0. In other words, if our sampled value of z is found to be
positive then we accept the alternative hypothesis that  was sampled from a normal pdf
with mean y = 2, whereas if our sampled value of z is found to be negative, or equal to
zero, then we accept the null hypothesis that  was sampled from a normal pdf with mean
@ = —2. In Figure 15, this particular choice of acceptance region and critical region is

shown as the horizontally and vertically striped area respectively under the normal pdfs.
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Note that our decision about whether the accept or reject the NH depends on the critical
region, which has to be chosen by the observer. A different choice of critical region might
lead to a different decision. This might seem to make the business of hypothesis testing
a little subjective, but in some ways this subjectivity is inevitable. Statistical theory can
never absolutely determine which of two competing hypotheses is correct — all it can
do is tell us, provided certain assumptions are valid, how probable the two competing
hypotheses are. Whether one (or indeed both!) of the hypotheses is then deemed to be
too improbable to be accepted is — in the final analysis — up to the observer to decide.
Very often this decision will depend on whether one is trying to prove one’s own theory
or model (i.e. by finding observational evidence to back it up), or disprove someone else’s

theory! We will return to this point shortly when we discuss significance.

Figure 15: PDF of test statistic under NH and AH for a simple hypothesis test.
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While the choice of critical region may be subjective, once we have specified our choice of
critical region we can objectively quantify what is the probability of making an incorrect

decision.

3.2 : Incorrect Decisions

We can make an incorrect decision in one of two ways

45



3.2.1 : Type I error

A type I error occurs when we reject the null hypothesis when it is TRUE — i.e. when

we should have accepted it. P(I) often denotes the probability of incurring a type I error.

3.2.2 : Type II error

A type II error occurs when we accept the null hypothesis when it is FALSE - i.e.
when we should have rejected it. P(II) often denotes the probability of incurring a type

II error.

We can calculate P(I) and P(II) in the simple example introduced above (see lectures),
where the areas under the appropriate normal pdf can be found by consulting the tables

provided.

A good hypothesis test should have small P(I) and P(II). Broadly speaking, this means
that the distributions of the test statistic under H; and H, should have little overlap. We
can always reduce P(I) by suitable choice of critical region, but this is inevitably at the
cost of increasing P(II). It is often useful to choose the critical region which minimises
some weighted combination of P(I) and P(II), but there is no general strategy suitable for

all situations.

One frequently adopted criterion is the power of a hypothesis test, defined as the prob-
ability of rejecting H; when it is false, i.e. power = 1 - P(II). Choosing a critical region
which maximises the power for a given alternative hypothesis is generally a useful strategy

for defining a good hypothesis test.

3.3 : Level of Significance

The level of significance of a hypothesis test is the maximum probability of incurring
a type I error which we are willing to risk when making our decision. In practice a level
of significance of 5% or 1% is common. If a level of significance of 5% is adopted, for
example, then we choose our critical region so that the probability of rejecting the null

hypothesis when it is {rue is no more than 0.05

If the test statistic is found to lie in the critical region then we say that the null hypothesis
is rejected at the 5% level, or equivalently that our rejection of the null hypothesis is
significant at the 5% level. This means that, if the null hypothesis is true, and we were

to repeat our experiment or observation a large number of times, then we would expect
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to obtain — by chance — a value of the test statistic which lies in the critical region (thus
leading us to reject the NH) in no more than 5% of the repeated trials. In other words,
we expect our rejection of the null hypothesis to be the wrong decision in no more than 5
times out of every 100 experiments. Yet another way to express this is to say that we are

‘95 % confident’ that we have made the correct decision in rejecting the null hypothesis.

As mentioned above, the choice of significance level is somewhat subjective. Suppose, for
example, that one is comparing the model prediction of another astronomer’s favourite
theory (here the NH) to the prediction of one’s own pet theory (here the AH). In this case
one might regard rejection at the 10% significance level to be sufficient grounds for ruling
out the other astronomer’s theory. Why? Because if the other astronomer’s theory is true,
there is at most a one in ten chance of the test statistic falling in the critical region (i.e. a
one in ten chance of obtaining data similar to — as ‘bad’ as, if you like — the actual data
which we do obtain). If, on the other hand, one were seeking support for one’s own theory
as the NH, then rejection at the 10% significance level might not be sufficient grounds to
give up on one’s theory, since one can argue that the actual data obtained happens to be
one of those one in ten data sets which, by chance (or ‘bad luck’, if you like), yield a test

statistic lying in the critical region — even when the NH is true.

How can we get around this? As remarked in section 3.1, we can always choose a more
stringent critical region. For example, if we could reject the NH at, say, the 1% or 0.1%
level, then we can be much more sure that the test statistic obtained for our real data
does not lie in our critical region by chance, even though the NH is true. In other words,
we reduce the probability of a type I error. But recall from section 3.1 that this will
inevitably increase the chances of accepting the alternative hypothesis when it is false —
i.e. making a type II error. Again, the key here is for the distribution of the test statistic
to be so nearly disjoint under the null and alternative hypotheses (i.e. having so little
overlap) that we can afford to adopt a ‘tough’ critical region without increasing P(II) too
much. Clearly one effective way to reduce the overlap between the pdf of test statistics is
to acquire more, and better, data, but in astronomy this is often a painful — and expensive

— solution!

3.4 : Two Tailed Tests

It is common for the critical region to be defined as both the upper and lower tails of
the distribution of the test statistic under H;. For example, consider the random variable

X ~ N(u,1) and the test statistic ¢ = z. Consider the null and alternative hypotheses
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H : p=0 Hy : pu#0

Then a value of ¢ either much larger or smaller than zero might lead us to reject H; and
accept Ho, since Hy only states that the mean value is different from zero. In this example,
adopting a 5% level of significance with a two tailed test would give as the critical region

for t
{t:|t| > 1.96}
while for a 1% level of significance with a two tailed test, the critical region for ¢ would be

{t: ]t > 257}

Figure 16: Two-tailed critical regions

Narmal pdf, N(Q,1), showing 5% criticel region (two—tailec

paf of t

In these examples t = £1.96 and ¢ = +2.57 are the critical values for the test statistic;
i.e. they indicate the boundary between the critical region and acceptance region. These

two-tailed critical regions are shown in Figure 16.
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3.5 : Goodness of Fit for Discrete Distributions

We can illustrate some of the important ideas of hypothesis testing by considering how
we test the goodness of fit of data to discrete distributions. We do this using the x?

statistic.

Suppose we carry out n observations and obtain as our results k different discrete outcomes,
E;, ..., By, which occur with frequencies o1, ...,0r (‘0’ for ‘observed’). An example of such
observations might be the number of meteors observed on n different nights, or the number

of photons counted in n different pixels of a CCD.

Consider the null hypothesis that the observed outcomes are a sample from some model
discrete distribution (e.g. a Poisson distribution). Suppose, under this null hypothesis,
that the k outcomes, Ej,..., Ey, are expected to occur with frequencies ey, ...,e; (‘e’ for
‘expected’). We can test our null hypothesis by comparing the observed and expected
frequencies and determining if they differ significantly. We construct the following x? test

statistic.

(Oi - 6,‘)2

€;

2

k
X g

=1

where > 0; = Y e; = n. Under the null hypothesis this test statistic has approximately a
x? pdf with v = k — 1 — m degrees of freedom. Here m denotes the number of parameters
(possibly zero) of the model discrete distribution which one needs to estimate before one
can compute the expected frequencies, and v is reduced by one further degree of freedom
because of the constraint that Y  e; = n. In other words, once we have computed the first

k — 1 expected frequencies, the k*" value is uniquely determined by the sample size n.

This x? goodness of fit test need not be restricted only to discrete random variables, since
we can effectively produce discrete data from a sample drawn from a continuous pdf by
binning the data. Indeed, as we remarked in Section 2.2.7 the Central Limit Theorem will
ensure that such binned data are approximately normally distributed, which means that
the sum of their squares will be approximately distributed as a x? random variable. The

approximation to a x? pdf is very good provided e; > 10, and is reasonable for 5 < e; < 10.

3.5.1 : Example 1

A list of 1000 ‘random’ digits — integers from 0 to 9 — are generated by a computer. Can

this list of digits be regarded as uniformly distributed?

Suppose the integers appear in the list with the following frequencies:-
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T 0 1 2 3 4 5 6 7 8 9
o 106 88 97 101 92 103 96 112 114 91

Let our NH be that the digits are drawn from a uniform distribution. This means that

each digit is expected to occur with equal frequency — i.e. e, = 100, for all r. Thus:-

= 7.00

k
X2 _ (Oi - 6z’)2
€;

i=1
Suppose we adopt a 5% level of significance. The number of degrees of freedom, v = 9;
hence the critical value of x? = 16.9 for a one-tailed test. Thus, at the 5% significance

level we accept the NH that the digits are uniformly distributed.

3.5.2 : Example 2

A coin is tossed 200 times, and 115 heads and 85 tails are recorded. Test the null hypothesis

that the coin is fair, using a 5% level of significance.
Under the NH of a fair coin we have e; = e3 = 100. Thus:-

2 o= yleme?

=1
Here, the number of degrees of freedom, v = 1, for which we have a critical value of

x? = 3.84. Hence we reject the NH at the 5% significance level - i.e. the coin is not fair.

3.5.3 : Example 3

The table below shows the number of nights during a 50 night observing run when r hours
of observing time were ‘clouded out’. Fit a Poisson distribution to these data for the pdf

of r and determine if the fit is acceptable at the 5% significance level.

T 0 1 2 3 4 >4
No. of nights 21 18 7 3 1 0

Of course one might ask whether a Poisson distribution is a sensible model for the pdf
of r since a Poisson RV is defined for any non-negative integer, whereas r is clearly at most
12 hours. However, as we saw in Section 1.3.2, the shape of the Poisson pdf is sensitive
to the value of the mean, u, and in particular for small values of u the value of the pdf

will be negligible for all but the first few integers, and so we neglect all larger integers as
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possible outcomes. Hence, in fitting a Poisson model we also need to estimate the value

of u. We take as our estimator of ;4 the sample mean, i.e.

2l x0 + 18 x1 + +7x2+3x3 +1x4

po= 5 = 0.90

Substituting this value into the Poisson pdf we can compute the ezpected outcomes, e, =

50p(r; i), where

p(0;0.90) = 0.4066 p(1;0.90) = 0.3659 p(2;0.90) = 0.1647
p(3;0.90) = 0.0494 p(4;0.90) = 0.0111 p(5;0.90) = 3.3 x 1075

If we consider only five outcomes, i.e. r < 4, since the value of the pdf is negligible for
r > 4, then the number of degrees of freedom, v = 3 (remember that we had to estimate
the mean, ). The value of the test statistic is x? = 0.68, which is smaller than the critical
value. Hence we accept the NH at the 5% level — i.e. the data are well fitted by a Poisson

distribution.

3.5.4 : The Binomial Distribution

In Section 3.5.3 we could have fitted the data with another discrete model — the binomial
distribution. Suppose there are a total of n hours in each observing night (e.g. n = 8 or
n = 12). Let 0 denote the probability of any single hour being ‘clouded out’. The binomial
distribution gives the probability of getting r out of n hours clouded out (r =0,1,...,n),
viz:-

n!

p(r;0) = g(L—-o)mr

rli(n —r)!
p(r;0) is the binomial pdf. It is quite straightforward to show (see handout) that the

binomial distribution has mean, E(r) = nf and variance, var(r) = nf(1 — 0).

As in Section 3.5.3, we have to estimate a single parameter — in this case 6 (assuming that
the number of observing hours, n, is known) — in fitting the data to a binomial model.
We do this by equating the sample mean, {i, with the expected value of r, i.e. nf. We can
then construct a x? statistic exactly as in 3.5.3. (remembering to reduce the number of

degrees of freedom by one because we need to estimate 8).

3.6 : The Kolmogorov-Smirnov Test

Suppose we want to test the hypothesis that a sample of data is drawn from the underlying
population with some given pdf. We could do this by binning the data and comparing with
the model pdf using the x? test statistic. This approach might be suitable, for example,
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for comparing the number counts of photons in the pixels (i.e. the bins) of a CCD array
with a bivariate normal model for the ‘point spread function’ of the telescope optics, where

the centre of the bivariate normal defines the position of a star.

For small samples this does not work well, however, as we cannot bin the data finely
enough to usefully constrain the underlying pdf — particularly if our pdf is multivariate,
as in the case of the bivariate normal example above, and requires several parameters to

define it.

A more useful approach in this situation is to compare the sample cumulative distribu-
tion function with a theoretical model. We can do this using the Kolmogorov-Smirnov

(KS) test statistic.

Let {x1, ...,z } be an iid random sample from the unknown population. Suppose the {z;}

have been arranged in ascending order. The sample cdf, S, (z), of X is defined as:-

0 T < I
Sn(@)=9 & <z <mip, 1<i<n-—1
1 T > Ty

i.e. Sp(z) is a step function which increments by 1/n at each sampled value of z.

Let the model cdf be P(z), corresponding to pdf p(z), and let the null hypothesis be that

our random sample is drawn from p(z). The KS test statistic is
D, = max|P(z) — Sp(z)]

It is easy to show that D, always occurs at one of the sampled values of . The remark-
able fact about the KS test is that the distribution of D,, under the null hypothesis is
independent of the functional form of P(z). In other words, whatever the form of
the model cdf, P(z), we can determine how likely it is that our actual sample data was
drawn from the corresponding pdf. Critical values for the KS statistic are tabulated or

can be obtained from numerical algorithms.

Figure 17 shows the KS test applied to the log period distribution in a sample of LMC
Cepheids. Shown is the sample cdf of the 39 stars, together with the model cdf with
which they are being compared: a normal distribution with mean and variance equal to
the sample mean and variance of the real data. The observed value of the test statistic
for these data, Dgy,s = 0.124. Comparison with the critical values of the distribution show
that Prob(D,, > Dyps) = 0.562. Thus, if the NH is true, there is a more than 50% chance

that one would obtain as large, or indeed larger, a value of D,, for a randomly chosen
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sample of 39 Cepheids drawn from the model normal pdf. This clearly suggests that we
should accept the null hypothesis for these data — i.e. the distribution of log periods is
adequately described by a normal pdf.

Figure 17: Example KS Test
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There is also a two-sample version of the KS test, where one tests the null hypothesis
that the two samples are drawn from the same underlying population. The test statistic

1s now

Dy = max|Spy(z) — Sp(z)]

)

where S, and S,, denote the sample CDF's of two samples of size m and n respectively.
Again the distribution of D, , under the null hypothesis is independent of the underlying
pdf. This is especially useful, because it means that we can test whether two samples
are drawn from the same underlying population without having to assume anything

about the form of that population.

The KS test is an example of a robust, or nonparametric, test since one can apply the
test with minimal assumption of a parametric form for the underlying pdf. The price for
this robustness is that the power of the KS test is lower than other, parametric, tests. In
other words there is a higher probability of accepting a false null hypothesis — that two
samples are drawn from the same pdf — because we are making no assumptions about the

parametric form of that pdf.
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3.7 : The Student’s t Test

In Section 3.1 we introduced the notion of a hypothesis test, and gave some important
definitions, by considering a hypothesis test to determine the mean, u, of a normal pdf with
known variance, 02 = 1, based on a single Jsampled value, z. Effectively we constructed

the test statistic

where 4 = —2 under Hy and 4 = 2 under Hy and z was a RV drawn from a standard normal
pdf, N(0, 1), with mean zero and unit variance. (N.B. recall that a statistic cannot depend
on any unknown parameters, but here o is assumed known and p is specified exactly under

either H; and Ho, so it makes sense to regard z as a statistic).

The more realistic situation, on the other hand, is where ¢ is not known a priori. In this
case we can infer nothing about y from a single observation since we have no idea of how
‘broad’ the pdfis. If n > 2, however, then we can construct a hypothesis test for the value
of the true mean, y, by first determining the sample mean and variance of our random

sample.

Suppose we want to test the hypothesis that the true mean takes some specific value, pg,

i.e. we take as our null and alternative hypotheses:-

NH: p=p  AH: p # wo

We construct the following test statistic

where [ is the sample mean, i.e. i = %in, and o is the standard error on the

mean (see handout), i.e.

=

1 n
~ — - @@ . [ 2

Thus
n(n —1)(4 — po)

[ (i — )22

t has a pdf known as the student’s ¢ distribution. It is similar in shape to a standard
normal pdf, N(0,1), but with wider ‘wings’ (i.e. positive kurtosis) and its shape also
depends on n — see the figure in the statistical tables. The pdf of ¢t has v = n — 1 degrees

of freedom. Thus, for a sample of size n, to carry out our hypothesis test we determine
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the value of the student’s ¢ statistic under the NH that u = po and compare this value

with the critical values of the pdf, for the appropriate number of degrees of freedom.

Note that the hypothesis test given above, where our AH is y # pg, calls for a two-tailed
test, since a value of ¢ significantly larger or smaller than zero would argue in favour of
the AH. If, on the other hand, we want only to test if 4 > po (u < po) then we would take

as our critical region the upper (lower) tail of the student’s ¢ distribution.

3.8 : Difference of Means

Let {z1,...,75, } and {y1,...,Yn,} be iid random samples from N(u1,0?) and N (uz,0?)
respectively, where o2 = 03 = 0. Suppose we wish to test the NH that y; — po = po, i-e.
the means of the pdfs from which the two samples are drawn differ by a fixed amount.
Under the NH then the difference of the sample means, ji1 — fi2, is a normal pdf with mean
o and variance o2 (i + i). If 02 were known then the appropriate test statistic to test

ni1 n
the NH would be
(1 — pi2) — po
OVar T as

which under the NH would have pdf N(0,1). If, as in Section 3.7, 02 is not known a

priori, then we use the test statistic

¢ - 1 1
OVar T as
where
1 ni ) n2 9 2
i = |— z; — 1i1)? + "
—— <z—21( i — Hi) izzl(yz fi2) )]

(i.e. 62 is the weighted mean of the unbiased estimators, from the first and second samples,

of the variance on a single observation — see lectures)

Under the NH ¢ has the student’s ¢ distribution with v = n; + no — 2 degrees of freedom.
Clearly to test if u1 = us we simply set pg = 0.

3.9 : F Test for the Ratio of Variances

Let {z1,..., %y, } and {y1, ..., Yn, } be iid random samples from N (u1,0%) and N(us2,03) re-
spectively. Unlike Section 3.8, we do not now assume that 0? = ¢2. In fact we specifically

want a simple hypothesis test of:-
NH : o2 = o3 AH : o? +# o2
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We use the test statistic, f, defined by:-

;@
= &%
where X m 2 2 X s 2
52 — i — 1 d 65 = i — [
01 ny — 1 ;(l'z fi1)” and &; Ny — 1 izzl(yz fi2)

Under the NH, that the two distributions have equal variance, this test statistic has a pdf
known as the F' distribution, with 14 = ny — 1 and v = ng — 1 degrees of freedom. (We
usually write this as F), ,,). The pdf of F' has a complicated analytic form which need
not concern us here. The essential idea of how it is used in practice is that, if the NH is
true, then values of the f statistic significantly larger or smaller than unity are unlikely.
Hence, by computing the f statistic and comparing the observed value with tabulated
critical values, we can make a decision whether to accept or reject the NH that the pdfs

from which the two samples were drawn have equal variance.

Typical astrophysical problems to which the F' test can be applied include comparing the
luminosity function of stars of different spectral types, or galaxies of different morpho-
logical type. One can also test, for example, whether the spatial distribution of galaxies
of different morphological types is significantly different — e.g. do spirals and ellipticals
have the same spatial distribution in galaxy clusters, or are ellipticals found preferentially
in the cores of clusters. (Primordial spirals which originally formed in cluster cores are
thought to have been torn apart and ‘cannibalised’ by ellipticals because of the strong
tidal forces in the cluster core, so that they are not found in the cores of clusters today).

See example sheet 4 for some similar applications of the F test.

3.10 : Hypothesis Tests on the Sample Correlation Coefficient

The final type of hypothesis test which we consider is associated with testing whether two
variables are statistically independent, which we can do by considering the value of the
sample correlation coefficient. In Section 1.9 we defined the covariance of two RVs,
X and Y, as

cov(X,Y) = E[(X = p)(Y — py)]

and the correlation coefficient, p, as

cov(X,Y)

Ox0y
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While we defined p in Section 1.9 in the context of its role as a parameter of the bivariate
normal distribution, one can define the covariance and correlation coefficient of any two
RVs (i.e. with any bivariate distribution) using the above formulae. As in the case of a

bivariate normal pdf, it follows that

X and Y are independent <« cov(X,Y)=0 <+ p=0

We estimate p by the sample correlation coefficient, p, defined by:-

VIX (@i — )] [ i — f1)?]

where, as usual, fi, and /i, denote the sample means of X and Y respectively, and all

p =

sums are over 1,...,n, for sample size, n. p is also often denoted by r, and is referred to

as ‘Pearson’s correlation coefficient’.

Of course, if X and Y do have a bivariate normal pdf, then p corresponds precisely to
the parameter defined in Section 1.9. To test hypotheses about p we need to know the
sampling distribution of p. We consider two special cases, both of which are when X and

Y have a bivariate normal pdf.

3.10.1 : p=0 (i.e. X and Y are independent)

If p = 0, then the statistic
pm/n—2

1-p°

has a student’s ¢ distribution, with ¥ = n — 2 degrees of freedom. Hence, we can use ¢ to

t =

test the hypothesis that X and Y are independent. (See example sheets and lectures).

3.10.2: p=py #0

In this case, then for large samples, the statistic

1 1+p
2 = 5 log, (1 — [))
has an approximately normal pdf with mean, y, and variance o2 given by
1 1+ Po) 2 1
= —1 =
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SECTION 4 : Point and Interval Estimation

In the previous sections we have discussed how to derive a point estimator of a parameter
~ i.e. a single number, 0, which we associate with the true (but unknown) value of some
parameter, 8. We derived 6 by applying e.g. the principle of maximum likelihood or the
principle of least squares. In order to assess the likely range of true values of of 8, we can
derive the dispersion, o4, of the estimator 6 (equal to the square root of the variance of
the estimator) — or more generally the covariance in the multivariate case, where we are
simultaneously estimating several parameters and our estimates may not be independent.
Thus, we can adopt

~

0 + U@

as a suitable measure of the range of likely true values of 6.

We can approach the problem in a complementary fashion, by deriving an interval esti-

mate for 6.

4.1 : Defining Confidence Intervals

We illustrate the construction of confidence intervals for a specific example. Consider an
iid random sample of size n from the normal distribution N (u,c?), and suppose that the
dispersion, ¢ is known a priori. If we define the variable

V(i —p)

g

VA =
then it follows that z ~ N(0,1). We therefore know that
Prob[-1.96 <2 <1.96] = 0.95

After some algebra one may easily show that this probability statement is precisely equiv-

alent to
g

vn

g

< pu < f+1.96
Sp s pTt /n

Prob [ﬂ —1.96 ] = 0.95

We call the interval

g ag
0 —1.96-— . i+ 1.96——
[u gﬁﬁ,u+ 96\/5]

a 95% confidence interval for the true mean, y. We refer to the two ends of the

confidence interval as 95% confidence limits for p.

Confidence intervals involving the standard normal pdf, N (0, 1), are particularly common.
Thus

ﬂi2.58\/iﬁ ﬂi2.64\/iﬁ i+

Sl
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are 99%, 90% and 68% confidence intervals for u respectively.

4.2 : Interpreting Confidence Intervals

We must be careful in interpreting the meaning of probability statements concerning

confidence intervals.

In the above example of sampling from N (p,0?), for a given sample of actual values from
the pdf i is a unique number, so the probability that the true mean value, pu, lies within

the chosen confidence interval is either zero or unity.

The meaning of a confidence interval requires one to think in terms of repeating the process
of random sampling from the pdf a large number of times — each time obtaining a different
value of of the sample mean, and hence different confidence limits for y, for the same fixed

(but unknown) true mean, . The probability statement

g g
— < u < ia+1.96— = .
\/ﬁ_u_u—k 96\/5 0.95

means that we would expect p to lie within the confidence limits in 95% of the large

Prob | — 1.96

number of different samples. We are, thus, 95% confident that p lies within in the

interval that we obtain with our actual, observed, value of fi.

4.3 : Shortest Confidence Intervals

Finally, note that confidence intervals of a given percentage level are not unique. One
can prove, however, that the shortest confidence interval for the mean of a normal pdf
corresponds to the case where the sample mean is taken to lie precisely in the centre of

the confidence interval.

Thus, the shortest 100(1 — @)% confidence interval for y in the above example, is

bt oz

vn

Z,
a _t2/2 - (0%
e dt = =
/_oo 2

where z, satisfies

5~
3
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