The impact of correlated noise on SuperWASP detection rates for transiting exoplanets

Alexis Smith

University of St. Andrews, Scotland, UK & the SuperWASP consortium*

* Consists of members from Cambridge, Keele, Leicester, OU, Queens Belfast, St. Andrews, ING, IAC

Overview

- SuperWASP-N
- Red, white and pink noise
- How much red noise is present in SuperWASP (SW) data?
- How does red noise affect planet hunting with SW?
- What can we do about it?
- How many planets are likely to be found in 2004 SW-N data?

(most of this work is in Smith et al. 2006 MNRAS 373 1151)

SuperWASP-N

- Wide-field survey based on La Palma using 5x (in 2004) 200mm camera lenses
- Other similar transit surveys exist – e.g. HAT, TrES, XO
- Potential to find many 'Hot Jupiters' and (with RV data) characterise masses and radii

Noise

- White
- Random
- uncorrelated
- Red
- Systematic
- correlated
- Pink
- mixture of red & white!

Figure from Pont (2006)

Noise

- Previously assumed that only white noise in photometric survey data – led to predictions of 15 planets / month for 5 SW cameras! (Horne 2002)
- Pont (2006) showed that red noise is generally present
- SYSREM algorithm (Tamuz *et al.* 2005) applied to SuperWASP data to remove 4 components of red noise.

Red noise removed with SYSREM

 Origin of 4 components not well understood, but may be functions of:

- -Residual secondary extinction
- -Temperature affecting focus
- -Sky brightness?
- -Vignetting?
- See Collier Cameron *et al.*, 2006, MNRAS **373** 799

How much red noise?

 Calculate average, x, of n points in transit duration time interval (2.5 hrs.)

 Calculate RMS, σ_r, of x
 over whole
 lightcurve

How much red noise?

- Calculate σ_r for all (non-variable) stars
 in 1 field
- Also have standard RMS, σ , of each lightcurve
- Define $\sigma_w = \sigma(n)^{-1/2}$
- If noise is completely white, then $\sigma_r = \sigma_w$, but if $\sigma_r > \sigma_w$, red noise is present

RMS vs. magnitude before decorellation with SYSREM

RMS vs. magnitude after decorellation with SYSREM

Red noise: conclusions

- SYSREM algorithm does good job at removing red noise.
- However, obvious that $\sigma_r \neq \sigma_w$ (red curve doesn't lie over blue curve).
- Therefore some red noise still present.
- About 3 mmag of red noise in data on 2.5 hour time-scale

How does red noise affect planet hunting?

 Model nearby stars with Besançon galactic model (Robin *et al.* 2003)

 Semi-major axis, a, randomly drawn from uniform log distribution.

 Planets assigned to F,G,K IV & V stars on basis of stellar metallicity...

Probability a star hosts a planet depends on metallicity

 $\mathcal{P}(\text{planet}) = 0.03 \times 10^{2.0[\text{Fe/H}]}$

(Fischer & Valenti 2005)

How does red noise affect planet hunting?

$$\mathcal{P}(\text{alignment}) \approx \arctan\left(\frac{R_*}{a}\right)$$

$\mathcal{P}(\text{transit}) = \mathcal{P}(\text{planet}) \times \mathcal{P}(\text{alignment})$

$$\Delta m \approx 1.3 \left(\frac{R_{\rm p}}{R_{*}}\right)^2$$

(Tingley & Sackett 2005)

The Besançon catalogue

 154,156 stars with 9.5<V<13 generated in 20 fields observed by 1 camera (DAS-2)

 ~47% of these are spectral types F,G or K and luminosity class IV or V.

 151±13 (~0.1% of total) allocated transiting planets (all planets in model are Jupiter-sized).

Signal-to-noise ratio, Sred

 SNR for red noise dominant case is given by

$$S_{\rm red} = \frac{\Delta m \sqrt{n_{\rm trans}}}{\sigma_{\rm r}(V)}$$

 Number of observed transits, n_{trans}, is simulated by assigning random epoch of transit and using real SW obs times

Determine $\sigma_r(V)$

Fit line to σ_r

$$\sigma_{\rm r}(V) = c_1 + c_2 \times 10^{0.4V}$$

where

$$c_1 = 2.88 \times 10^{-3}$$

 $c_2 = 4.34 \times 10^{-8}$

Signal-to-noise ratio, Sred

Back to equation for SNR:

$$S_{\rm red} = \frac{\Delta m \sqrt{n_{\rm trans}}}{\sigma_{\rm r}(V)}$$

- Δm directly from R_{\star} in catalogue
- *n*trans from simulation (real obs times)
- $\sigma_r(V)$ fitted (previous slide)
- So we can calculate S_{red} as fⁿ of V

*S*_{red} vs. magnitude: 51 nights: 1 'detection'

*S*_{red} vs. magnitude: 80 nights: 2 'detections'

*S*_{red} vs. magnitude: 130 nights: 12 'detections'

Why does increasing number of night of observations lead to more detections?

- S_{red} increases with increasing n_{trans}
- *n*_{trans} depends on observing baseline (see next slides)
- Hence increasing the observing baseline boosts $S_{\rm red}$...
- ...leading to more detections!

Fractional transit recovery: 51 nights of observations

Fractional transit recovery: 80 nights of observations

Fractional transit recovery: 130 nights of observations

Simulated detection rates for all 2004 SW-N DAS-2 fields

Field ID	No. of nights of observations	No. of observations	No. o Model	of stars Observed	No. of planets with $S_{\rm red} \ge 10$ in simulation	Detections per 10^4 stars
SW0043+3126	88	2962	6150	4746	0.12 ± 0.32	0.20
SW0044+2826	80	2851	5684	7353	0.10 ± 0.30	0.18
SW0143+3126	72	2251	6354	7840	0.06 ± 0.24	0.01
SW0243+3126	61	1646	7114	8235	0.07 ± 0.26	0.10
SW0343+3126	46	1286	9630	8465	0.03 ± 0.17	0.03
SW0443+3126	44	911	16062	8314	0.04 ± 0.20	0.02
SW0543+3126	38	539	21255	15021	0.01 ± 0.10	0.00
SW1043+3126	31	473	2939	2775	0.01 ± 0.10	0.03
SW1143+3126	51	813	2628	2508	0.03 ± 0.17	0.11
SW1243+3126	86	2157	2577	2605	0.07 ± 0.35	0.27
SW1342+3824	103	2578	2482	2724	0.09 ± 0.32	0.36
SW1443+3126	125	3618	2988	3071	0.24 ± 0.51	0.80
SW1543+3126	130	4422	3899	3963	0.27 ± 0.47	0.69
SW1643+3126	129	4795	5388	6233	0.37 ± 0.59	0.69
SW1739+4723	119	4401	5361	8791	0.41 ± 0.58	0.76
SW1743+3126	130	5214	8712	11681	0.45 ± 0.65	0.52
SW1745+1727	110	3590	13700	17818	0.38 ± 0.60	0.28
SW2143+3126	88	3672	15145	24129	0.27 ± 0.53	0.18
SW2243+3126	118	4388	9175	14330	0.42 ± 0.60	0.46
SW2343+3126	112	3629	6913	9488	0.28 ± 0.53	0.41
Total			154156	170090	3.72 ± 1.60	0.24

3.72±1.60 planets with $S_{\rm red} \ge 10$

Simulated detection rates for all 2004 SW-N DAS-2 fields

- Total of 151±13 transiting planets in simulation of 20 fields with >10 nights observations
- 3.72±1.60 planets are 'detected' (i.e. have $S_{red} \ge 10$)
- Scaling up to 5 cameras on 2004 data alone – predict 18.6±8.0 planets

Detection rate vs. number of nights

Predictions vs. results (so far)

- Simulations also run in 2 magnitude ranges:
- 9.5 < V < 12 : 13.25 ± 8.0 [for 5 cameras]
- 12 < V < 13 : 4.6 ± 4.8 [for 5 cameras]
- because red noise greater for fainter stars

 We find 3(!) planets in 9.5 < V < 12 range.

Predictions vs. results (so far)

• Why only 3 planets?

- Over-estimated no. of short P planets?
- Not all candidates followed up, only the best
- Effects of edge of CCD, etc ignored
- Jupiter-sized planets assumed

Predictions vs. results (so far)

Conclusions

- SuperWASP data suffers from red noise, despite decorrelation with SYSREM.
- Even 3 mmag of red noise limits ability to find planets.
- Red noise can be overcome by observing more transits – boosts SNR...

...Need to observe for longer to do this!