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Why we study chaos

Chaos is important to understand the evolution of our (and
others) solar system dynamics, because we find chaos in the
orbits of the planets, of many asteroids, in the rotation of Mars
and of satellites....

These lectures are an introduction to the basic phenomena
which produce chaos in dynamical systems, which can be
found in very simple examples and can be exported (with
‘some’ work....) to the much more complex systems of the real
world.



Chaos in two dimensional maps
I Stable and unstable manifolds of saddle points
I Dynamics near the homoclinic tangles
I Barriers to diffusion: KAM curves and cantori
I Chaos and diffusion: etheroclinic orbits, Chirikov diffusion

Higher dimensional cases
I Arnold diffusion
I Chaos in the orbits of the giant planets of our solar system



What is chaos?

Chaos is related to the real possibility of predicting the future of
a deterministic dynamical system

I If we could know exactly the laws of nature and the
situation of the universe at the initial instant, we should be
able to predict exactly the situation of this same universe at
a subsequent instant. But even when the natural laws
should have no further secret for us, we could know the
initial situation only approximately. If that permits us to
foresee the subsequent situation with the same degree of
accuracy, ..., we say that the phenomenon has been
predicted... But this is not always the case; it may happen
that slight differences in the initial conditions produce very
great differences in the final phenomena (H. Poincaré).



A model example

A way to visualize the differences in the orbits of close initial
conditions is to represent the evolution in the phase–space of a
set A of initial conditions. Let us denote by:

ψ : M −→ M ,

a map such that, if x ∈ M is the state of the system at time
t = 0, ψ(x) is the state of the system at the time 1. Therefore
we represent the sequence:

A , ψ(A) , ψ2(A) , . . . , ψt(A) , . . .



A model example of exponential divergence: the
Arnold cat

I The phase–space M is T2

I The orbit of a point x is given by the iteration of the map

ψ : T2 −→ T2

(x1, x2) 7−→
(

x1 + x2

x1 + 2x2

)
mod (1)



Dispersion of a square 0.1× 0.1 in 6 iterations of the map

t = 0



Dispersion of a square 0.1× 0.1 in 6 iterations of the map

t = 1



Dispersion of a square 0.1× 0.1 in 6 iterations of the map

t = 2



Dispersion of a square 0.1× 0.1 in 6 iterations of the map
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Dispersion of a square 0.1× 0.1 in 6 iterations of the map

t = 5



Dispersion of a square 0.1× 0.1 in 6 iterations of the map

t = 6

I After 6 iterations of the
map the square is
spread in the entire
phase–space, so that
one is not able to
distinguish the orbits of
2 points with initial
conditions
‖z − z ′‖ ∼ 0.1.



One could think that the “poor control” T < 6 on the orbits is
due to the big distance 0.1 between initial conditions. We now
use a square 10−14 × 10−14 (smaller than atomic radii!).

t = 20



One could think that the “poor control” T < 6 on the orbits is
due to the big distance 0.1 between initial conditions. We now
use a square 10−14 × 10−14 (smaller than atomic radii!).

t = 27



One could think that the “poor control” T < 6 on the orbits is
due to the big distance 0.1 between initial conditions. We now
use a square 10−14 × 10−14 (smaller than atomic radii!).

t = 31



Ingredients which determine the chaotic behavior of
the Arnold cat

I A fixed point:
ψ(0,0) = (0,0)

which is hyperbolic:

∂ψ

∂x
(0,0) =

(
1 1
1 2

)
,

has eigenvalues 0 < λ1 = 3−
√

5
2 < 1 < λ2 = 3+

√
5

2 .



I The eigenvectors u1,u2 have irrational slopes: the stable
set of the fixed point:

W s = {(x1, x2) : lim
t→∞

ψt(x1, x2) = (0,0)} =< u1 > mod 1

and the unstable set of the fixed point:

W u = {(x1, x2) : lim
t→∞

ψ−t(x) = (0,0)} =< u2 > mod 1

are dense, with a dense set of transverse intersections.



The Arnold cat is constructed to exhibit the strongest possible
chaotic behaviour:

I Fixed point with dense stable set W s, unstable set W u

I The linearized map is hyperbolic at any point



Even in more general cases the structure of the stable and
unstable sets are the key to understand the chaotic behavior. In
the generic case one needs:

I An hyperbolic fixed point
I An homoclinic intersection of W s,W u, i.e. a point of

transverse intersection of the stable and unstable sets of
the hyperbolic fixed point.



Some examples

Just to fix ideas with more general examples, we recall:
I the 2D standard map
I the rotation of a satellite
I normal forms of resonances of quasi-integrable systems

(periodically perturbed pendulum)



Example: standard map

I The map is (I, ϕ) 7→ (I′, ϕ′) such that:

ϕ′ = ϕ+ I
I′ = I + ε sin(ϕ+ I) (1)

with (I, ϕ) ∈ R× T, ε ∈ R is a parameter.
I (0,0) is hyperbolic, 0 < λ1 < 1 < λ2.



Example: Rotations of satellites

I A tri-axial satellite, whose CM moves on Keplerian orbit;
I The satellite is constrained to rotate in the plane x , y

around an axis of inertia;
I The equation of motion for ϕ is:

ϕ̈ = −3
2
Ω2

( a
|r |

)3 I2 − I1
I3

sin(2(ϕ− λ))



We compute the one–period map of the libration angle:

(ϕ(0), ϕ̇(0)) 7−→ (ϕ(T ), ϕ̇(T ))

where T is the period of the Keplerian orbit.



Example: resonances of quasi-integrable systems
(periodically perturbed pendulum)

I The differential equation is:

ϕ̈ = − sin(ϕ) + εf (ϕ, t) (2)

with f which is 2π periodic.

I Example:
ϕ̈ = − sin(ϕ) + ε cos(ϕ) cos(t),
ε = 0.02



Stable and unstable manifolds of saddle points

I In all these system there is a saddle fixed point z for any
value of the parameters (ε or e)

I We define the stable manifold of z:

W s = {x : lim
t→∞

ψt(x) = z}

and the unstable manifold of z:

W u = {x : lim
t→∞

ψ−t(x) = z}

I Stable manifold theorem:
W s,W u are differential
manifolds, locally tangent in
the fixed point to the
egenvectors of Dψ(z) (linear
stable and unstable spaces).



I In 2D systems with a first
integral (pendulum, rotations
of satellites with e = 0) the
manifolds W s,W u are
contained in the level sets of a
regular function.

To produce chaos we need an additional hypothesis:

I We suppose that there
exists at least an
homoclinic point of
intersection of W s,W u.



The existence of an homoclinic point is sufficient to show that
W s,W u have a complicate topology

I Each point of the orbit of the
homoclinic point z0:

zt = ψt(z0) t ∈ Z

is homoclinic (it is on W s ∩W u

and the intersection is
transverse).

I The unstable manifold cuts the stable manifold
transversally infinite times



I Approaching the fixed point
the base of each lobe
becomes smaller and the
height becomes bigger (near
the fixed point there is
contraction along Es and
expansion along Eu).

I At a given point, the lobes of
the unstable manifold are so
big that they are forced to
intersect the stable manifold in
points z ′, z ′′ which are not in
the orbit of z0. The orbits of
these points contains only
homoclinic points.....













The horseshoe map

I The dynamics in
the homoclinic
tangles can be
described using
symbolic dynamics
and horseshoe
conjugation.



I The orbits of points in D1 or D2 converge to a fixed point of
D1

I The orbits of points z ∈ R such that after some iterations of
the map belong to D1 or D2 converge to z

I We are interested only in the points whose orbit belongs to
R:

Λ+ = ∩k≥0φ
−k (R)

and are image of points of R:

Λ− = ∩k≥0φ
k (R)

so that:
Λ = Λ+ ∩ Λ−



I R ∩ φ(R): points of R which
after 1 iteration of the map are
still in R

I R ∩ φ(R) ∩ φ2(R): points of R
which after 2 iterations of the
map are still in R

I Λ−: has the structure of a
Cantor set of horizontal lines

I Each horizontal line can be
labelled by an infinite
sequence σ1, σ2, . . .,
σk ∈ {0,1}



I R ∩ φ−1(R)

I R ∩ φ−1(R) ∩ φ−2(R)

I Λ+: has the structure of a
Cantor set of vertical lines

I Each vertical line can be
labelled by an infinite
sequence σ1, σ2, . . .,
σk ∈ {0,1}



The set Λ has the structure of a double Cantor set, each point
is in the intersection of a vertical and an horizontal line and can
be labelled by a double inifinite sequence

σ = (....σ−1, σ0, σ1, ....) , σk ∈ {0,1}



Symbolic dynamics of the horseshoe

It is convenient to label the points of Λ in the following way: we
define the “symbolic story” of a point z ∈ Λ; that is an invertible
map:

h : Λ −→ Σ

z 7−→ σ

where:

Σ = {σ = (....σ−1, σ0, σ1, ....) , σk ∈ {0,1} ∀k}

such that for any point z ∈ Λ it is:

φt(z) ∈ ∆σ t ∈ Z

that is σt = 0 if φt(z) ∈ ∆0, σt = 1 if φt(z) ∈ ∆1.



I h is invertible
I h is homeomorphism (σk = σ′k for all |k | ≤ N, then

dist(σ, σ′) ≤ 1/2N )
I The symbolic dynamics of φ is the map:

φ̃(σ)k = σk+1 ,

i.e. the left–shift of the sequence σ



For any arbitrary sequence of symbols there exists a point z
with that story!!!!

I there are two fixed points: (......00000000000......),
(....1111111....)

I there are periodic orbits of any period (one repeats a finite
sequence σ0, . . . , σT−1)

I the set of points whose orbits are periodic is dense: near
any (........01001111.........) there exist the periodic
sequence (...010011110100111101001111.....).



I there exist points whose orbit is dense in Λ:

0 1 00 01 11 10 000 010 101 001 110 111....

I There is exponential divergence of close initial conditions
in Λ.

I Error ε in the initial condition implies that the symbolic story
of z is known up to a finite time |log ε|

All these facts can be used to characterize non–trivial, chaotic,
dynamics on Λ.

“The dynamics of the horseshoe is chaotic”



Horshoes in the homoclinic tangles

We find horseshoes (or similar maps) in the homoclinic tangles.

I There is an
horseshoe in this
system with a
saddle point z and
an homoclinic
point



I We chose a set
along the stable
manifold, which
contains the fixed
point and an
homoclinic point

I The image of this
set is compressed
along the stable
manifold and
stretched along
the unstable
manifold.



I After some
iterations k the
image cuts the
original ’rectangle’
set in two
’horizontal’ sets
∆̃0, ∆̃1, whose
pre–images are
two ’vertical sets’
∆0, ∆1.We have
obtained an
horseshoe.



I After some
iterations k the
image cuts the
original ’rectangle’
set in two
’horizontal’ sets
∆̃0, ∆̃1, whose
pre–images are
two ’vertical sets’
∆0, ∆1.We have
obtained an
horseshoe.



Symbolic conjugation to σk ∈ {0,−1,1}

I Symbolic
dynamics in the
Arnold cat.

I Symbolic
dynamics in the
forced pendulum,
spin-orbit
librations.



In conclusion.....

I Non-trivial, chaotic dynamics are produced near the
homoclinic tangles of hyperbolic fixed points

I The existence of an homoclinic point is a minimum
requirement for the existence of a complicate structure for
the stable and unstable manifolds of the fixed point

I It is possible to identify horseshoes (or similar maps) for
some iterates of the dynamical systems: we can describe
the dynamics by means of the symbolic dynamics.

I Existence of dense sets of periodic orbits, of dense orbits,
of arbitrary ’stories’, exponential divergence of close initial
conditions, short prediction time.



Barriers to chaotic diffusion

In 2D systems invariant curves are topological barriers to
diffusion.

I ϕ′2 = ϕ2 + I2
I′2 = I2 + ε

sin ϕ′
2

(cos ϕ′
2+1.1)2 ,

ε = 0.002
I Chaotic motions are bounded

by invariant curves: the action
I is confined near the initial
value for infinite times.

I KAM theorem: for small ε
there is a big volume of
invariant curves



I ε = 2.6 10−3

I limit situation: most of the
invariant barriers to the
diffusion of variable I seem to
have disappeared



I ε = 4 10−3

I All the invariant barriers to the
diffusion of variable I have
disappeared



Invariant sets with given rotation number α

We consider the map:
ϕ′ = ϕ+ I

I′ = I + εf (ϕ′)

and we look for invariant sets M with given rotation number by
looking for parameterizations of S1 which conjugate the
dynamics to a fixed rotation of a number α:

S1 → R× S1

ϑ 7→ (I = V (ϑ), ϕ = U(ϑ))

such that the dynamics in the variable ϑ is:

ϑ 7−→ ϑ+ α .



Therefore, replacing I = V (ϑ), ϕ = U(ϑ), ϕ′ = U(ϑ+ α),
I′ = V (ϑ+ α) in the equations defining the map, one obtains:

ϕ′ = ϕ+ I ⇒ V (ϑ) = U+ − U

I′ = I + εf (ϕ′) ⇒ U − U+ + U−

2
+
ε

2
f ◦ U = 0

where U+ = U(ϑ+ α), U− = U(ϑ− α).



Theorem 1 (Mather-Aubry) For any α ∈ R\Q there exists a
solution U to equations:

U − U+ + U−

2
+
ε

2
f ◦ U = 0 ,

which is strictly monotone and ’periodic’:
U(ϑ+ 2π) = U(ϑ) + 2π.

Theorem 2 (KAM) If α/(2π) ∈ R\Q is Diophantine, i.e.:∣∣∣∣ α2π − p
q

∣∣∣∣ ≥ γ

qτ
∀p ∈ Z q ∈ N

and ε is small, then U is smooth.



Given a rotation number α, a solution U, the set:

Mα = {(V (ϑ) = U+(ϑ)− U(ϑ),U(ϑ))}

is invariant set of motions with rotation number α.
If U is continuous, Mα is a curve: KAM curve, complete barrier
to diffusion.



For any discontinuity of U the set Mα has a ’hole’ in the phase
space.

There is at most a countable set of discontinuities: Mα is called
cantorus, partial barrier to diffusion.



Standard map, ε ∼ 0.98



Diffusion along eteroclinic points

I By computing the fixed saddle points of ψk : one gets the
hyperbolic periodic orbits of period k

I Compute their stable and unstable manifolds
I If the stable manifold of an hyperbolic periodic orbit

intersects transversally the unstable manifold of a periodic
hyperbolic orbit there is the possibility of passing from the
chaotic region related to one periodic orbit to the other:
Chirikov diffusion.









In conclusion.....

I In 2D systems invariant curves are complete barriers to
diffusion

I KAM theorem: if ε is small, there are many KAM curves
which prevent global diffusion; only local chaos is allowed

I Increasing ε the KAM curves break into cantori
I Cantori are partial barriers to diffusion, but are effective

only for ε near the critical value of breaking of the KAM
curve

I Etheroclinic connections give the possibility of Chirikov
diffusion



The celebrate model of Arnold diffusion

A special quasi–integrable system:

H =
I2
1

2
+

I2
2

2
+ ε cosϕ1 + εµ(cosϕ1 − 1)(sinϕ2 + sin t)

with Hamilton equations:

ϕ̇1 = I1
ϕ̇2 = I2
İ1 = ε sinϕ1 + εµ sinϕ1(sinϕ2 + sin t)
İ2 = −εµ(cosϕ1 − 1) cosϕ2 (3)

For ε = 0 the system has only 3D invariant tori:

ϕ̇1 = I1 = const ϕ̇2 = I2 = const ṫ = 1



For ε 6= 0 we consider the special resonance:

ϕ̇1 = 0

which contains the manifold of invariant 2D tori:

I1 = 0 ϕ1 = 0 ϕ̇2 = I2(0) ṫ = 1

which are hyperbolic:
I For µ = 0 the system is the product of a pendulum and a

rotator

H =
I2
1

2
+ ε cosϕ1 +

I2
2

2
The stable/unstable manifolds of each torus are the
separatrices of the pendulum: there is not diffusion of I2

I For µ 6= 0 the unstable manifold of each hyperbolic torus
intersects transversally the stable manifolds of close
invariant tori: there exists diffusion through these
etheroclinic points.



This kind of diffusion is called Arnold diffusion
I Recent generalization to systems

H =
I2
1

2
+

I2
2

2
+ ε cosϕ1 + εµf (ϕ1, ϕ2, t)

I For generic quasi–integrable systems:

H =
I2
1

2
+

I2
2

2
+ εf (ϕ1, ϕ2, t)

there is not a proof of existence of Arnold diffusion



Regular and chaotic motions in 4D systems

Two coupled twist maps as model example:

ϕ′1 = ϕ1 + I1 , ϕ′2 = ϕ2 + I2

I′1 = I1 − ε
∂f
∂ϕ1

(ϕ′1, ϕ
′
2) , I′2 = I2 − ε

∂f
∂ϕ2

(ϕ′1, ϕ
′
2)

where ε is ’small’ and:

f =
1

cos(ϕ1) + cos(ϕ2) + 4



I If ε = 0 the actions are constants of motion and the angles
rotate at constant angular velocity

I If ε is small there is a big volume of 2D invariant tori (KAM
theorem)

I The 2D invariant tori do not trap motions in the 4D phase
space: there is the possibility of diffusion even for very
small ε

I Diffusion needs hyperbolic structures



Resonances of the system

The angle k1ϕ1 + k2ϕ2 is resonant when:

k1ϕ
′
1+k2ϕ

′
2 = (k1ϕ1+k2ϕ2)+(k1I1+k2I2) = (k1ϕ1+k2ϕ2)+2πk3

i.e. when:
k1I1 + k2I2 − 2πk3 = 0 .



Far from all these resonances we
find the KAM tori:

|k1I1 + k2I2 − 2πk3| ≥
O(
√
ε)

|(k1, k2, k3)|τ

I KAM tori fill a set of volume 1−
√
ε

I The complement of the set of invariant tori is called Arnold
web, and contains the possible hyperbolic structures,
chaotic motions, diffusion,...



A section of the–phase space

To represent the Arnold web and the hyperbolic structures we
consider a 2D section of the phase space which is transverse
to all KAM tori:

S = {(I1, I2, ϕ1, ϕ2) : (ϕ1, ϕ2) = (0,0) }

For each point of the section I compute the Fast Lyapunov
Indicator, and represent it with a color scale:

I higher values (yellow) → chaotic resonant motions
I intermediate values (orange) → regular motions (KAM tori)
I lower values (black) → regular resonant librations



Computation of the Arnold web

I Surface: ϕ1 = 0,
ϕ2 = 0

I ε = 0.1: there is a
prevalence of KAM
tori in the phase
space

I The hyperbolic
structures are
organized in the
web of resonances



Computation of the Arnold web

I Surface: ϕ1 = 0,
ϕ2 = 0

I ε = 0.6: there is
still a prevalence
of KAM tori in the
phase space,

I Resonances are
enlarged



Computation of the Arnold web

I Surface: ϕ1 = 0,
ϕ2 = 0

I ε = 1.6: there is a
prevalence of
resonant motions:
resonant regular
motions and
chaotic motions

I The hyperbolic
structures are not
organized in a web



Two possible scenarios for diffusion:
I If ε is small

I diffusion is confined to the Arnold web, which is open,
dense set of small measure.

I By Nekhoroshev theorem it is extremely slow:

|I(t)− I(0)| ≤ O(εα) , |t | ≤ exp−
(ε0

ε

)β

I If this kind of diffusion exists, it could be called Arnold
diffusion.

I If ε is big
I resonances overlap globally, diffusion is possible in a big

volume of the phase–space
I this kind of diffusion is fast, and could be called Chirikov

diffusion.



Diffusion of 20 orbits
For ε = 0.6 the orbits diffuse through the Arnold web of the
system



Diffusion of 20 orbits
For ε = 0.6 the orbits diffuse through the Arnold web of the
system



Diffusion of 20 orbits
For ε = 0.6 the orbits diffuse through the Arnold web of the
system



Diffusion of 20 orbits
For ε = 0.6 the orbits diffuse through the Arnold web of the
system



I Can we apply these techniques to planetary systems?
I The mean motion resonances among 3 of more planets

are arranged as a a web similar to the Arnold web
I Applications: outer planets of our Solar System; extra-solar

planetary systems; asteroids of the main belt.



The outer Solar System is near (but not in) some important
mean–motion resonances, such as:

I 2λ̇J − 5λ̇S ∼ 0 (Great Inequality)

I λ̇S − 3λ̇U ∼ 0

I λ̇U − 2λ̇N ∼ 0

These quasi–resonances are coupled through 2 order
planetary masses producing three–planet resonances



Example: the restricted Sun–Jupiter–Saturn system

I The Sun–Jupiter–Saturn system is near the 2λ̇j − 5λ̇S.
I We compute the Fast Lyapunov Indicator for a grid of initial

conditions obtained by fixing all initial conditions except for
a5,a6.

I FLI color scale:
I higher values (yellow) → chaotic resonant motions
I intermediate values (orange) → regular motions (KAM tori)
I lower values (black) → regular resonant motions



Geometry of resonances for the Sun–Jupiter–Saturn three
body problem:

I The 5–2 resonance
appears as a large
yellow band.

I The SJS system is near
it, but not in it

I Outside the resonance,
motions are regular



Geometry of resonances for the Sun–Saturn–Uranus three
body problem:

I The 3–1 resonance
appears as a large
yellow band.

I The SSU system is near
it, but not in it

I Outside the resonance,
motions are regular



Because the system is outside two–planets mean motion
resonances, one can average the hamiltonian at first order
order in planetary masses obtaining:

H = h(L5, ...,L8) + ε H0(L,G,H,g,h) + ε2 H1(L,G,H, l ,g,h; ε) ,

where H1 contains harmonics:

niλi + njλj + nkλk +
∑

h

(khωh + k ′hΩh)



Diagonalization/normalization of the secular part H0 (far from
secular resonances):

(L,G,H, l ,g,h) 7−→ (L′,G,′H ′, l ′,g′,h′)

such that (dropping primes):

H = h(L5, ...,L8) + ε H0(L,G,H) + ε2 H1(L,G,H, l ,g,h; ε)



The terms O(ε2) are important for the dynamics:

The integration of the
Sun–Jupiter–Saturn–
Uranus–Neptune gives a
very different result: many 3
planet resonances have
appeared



What are three–planet resonances

I Linear combinations of the quasi–resonances:

(2λ̇J − 5λ̇S) , (λ̇S − 3λ̇U) , (λ̇U − 2λ̇N)

produce combinations such that:

ni λ̇i + nj λ̇j + nk λ̇k ∼ secular frequencies

I As a consequence, some angles:

niλi + njλj + nkλk +
∑

h

(khωh + k ′hΩh)

are in resonance.



For each ni ,nj ,nk such that:

ni λ̇i + nj λ̇j + nk λ̇k ∼ secular frequencies

there is a cluster/multiplet of resonances:

ni λ̇i + nj λ̇j + nk λ̇k +
∑

h

(khω̇h + k ′hΩ̇h) ∼ 0

for different values of the secular coefficients kh,K ′h.



Representation in the ai ,aj plane of the cluster:

ni λ̇i + nj λ̇j + nk λ̇k +
∑

h

(khω̇h + k ′hΩ̇h) ∼ 0

is a family of parallel resonances at distance O(ε), and
amplitude O(ε): there can be resonance overlapping.

Near the initial condition of Jupiter–Saturn–Uranus–Neptune:
amplitude/distance of these resonances is of order 10−4/10−5

AU.



High resolution spans of three–planet resonances

We need to zoom near initial condition of the true solar system:
typical amplitude and separation of these resonances is of
∆a ∼ 10−6/10−4AU.

I What we compute: we fix all orbital elements, except for
(two) semi–major axis, which span a two dimensional grid
around the true initial condition. For each point of the grid
we compute the Fast Lyapunov Indicator.

I What we expect to find: any fixed integers ni ,nj ,nk

generate a family of parallel resonances: in the
semi–major axis space

ni λ̇i + nj λ̇j + nk λ̇k +
∑

h

(khω̇h + k ′hΩ̇h) ∼ 0



Jupiter and Saturn
All initial conditions are fixed except for a5, a6

I Many families of 3PR at
the distance of 10−5 AU

I The 3PR are arranged
as a regular web (similar
to the Arnold web)

I The true solar system is
very near a crossing of
resonances: possibility
of chaotic motions.



Saturn and Uranus
All initial conditions are fixed except for a6, a7

I Many families of 3PR at
the distance of 10−5 AU

I The 3PR are arranged
as a regular web (similar
to the Arnold web)

I The true solar system is
very near a crossing of
resonances: possibility
of chaotic motions.



Uranus and Neptune
All initial conditions are fixed except for a7, a8

I There is local
overlapping of
resonances around the
true initial condition.

I The chaotic region
extends by 10−3 AU
around the true initial
conditions.

I Possibility of chaotic
Chirikov–like diffusion.



Families of TPR responsible of the overlapping

Families of resonances:

nJ λ̇J + nSλ̇S + nU λ̇U + nN λ̇N ∼ 0

responsible of the overlapping:
I (nJ ,nS,nU ,nN) = (1,−3,3,−3),

I (nJ ,nS,nU ,nN) = (3,−5,−7,0) (Murray-Holman)
I Their integer combinations, such as

(nJ ,nS,nU ,nN) = (2,−2,−10,3).



Dynamics outside TPR

The dynamics is quasi–periodic (KAM–tori like).

Evolution of a6 and a7, averaged over 10 Myr.

a6

t

a7

t



Dynamics inside one isolated family of TPR

Dynamics inside the family:

ni λ̇i + nj λ̇j + nk λ̇k + ..... ∼ 0

where only ni ,nj are fixed.
I Motions can be chaotic with TL ∼ 10Myr ;
I The (averaged) motion of the actions is mainly flattened

along the line parallel to

(L̇i , L̇j , L̇k ) ∼ (ni ,nj ,nk )

I Diffusion of the actions in other directions occur in much
longer time (Arnold diffusion–like), typically:

∆a
∆t

∼ 10−6 AU
Gyr



Dynamics inside overlapping TPR

Dynamics inside the overlapping families:

ni λ̇i + nj λ̇j + nk λ̇k + ... ∼ 0 n′
i λ̇i + n′

j λ̇j + n′
k λ̇k + ... ∼ 0

with the first one larger than the second one.
I Chaos: TL ∼ 10Myr ;
I (averaged) actions is flattened on:

(L̇i , L̇j , L̇k ) ∼ (ni ,nj ,nk )

but the second family forces chaotic diffusion on a
2-dimensional space; with:

∆a
∆t

∼ 10−4 AU
Gyr



Dynamics in the TPR
Dynamics in the TPR

I Projection of the
dynamics (averaged
over 20 Myr) on the
a7,a8 space



Dynamics of the true Solar System

Evolution of a5 and a6, averaged over 10 Myr
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Dynamics of the true Solar System

Evolution of a7 and a8, averaged over 10 Myr
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Conclusions

I The crossing of the resonances related to
(n1,n2,n3,n4) = (1,−3,3,−3), (3,−5,−7,0) (and their
integer combinations) is responsible of a region of
overlapping resonances which extends of about 10−3 AU
with respect to a7,a8.

I Fictitious planetary systems with initial conditions in this
region can undergo very slow systematic drifts of a7,a8.

I Our solar system is marginally in this region: the
semi–major axes a7,a8 can undergo systematic variations
of ∼ 10−4 AU/Gyr.

I The dynamical state of the giant planets is metastable: on
107 yrs they seem trapped in thin three–planet resonances
responsible of the chaos, but on 109 yrs these resonances
cause a drift of the orbital elements.
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