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ASYMPTOTIC SERIES FOR PLANETARY MOTION IN
PERIODIC TERMS IN THREE DIMENSIONS

P. J. MESSAGE

Department of Applied Mathematics and Theoretical Physics, Liverpool University, England

Abstract. For the ‘planetary case’ of the gravitational n-body problem in three dimensions, a sequence
of Lie series contact transformations is used to construct asymptotic series representations for the canonical
parameters of the instantaneous orbits in a Jacobi formulation. The series contain only periodic terms,
the frequencies being linear combinations of those of the planetary orbits and those of the secular variations
of the apses and nodes, and the series are in powers of the masses of the planets in terms of that of the
primary, and of a quantity of the order of the excursions of the eccentricities and inclinations of the orbits.
The treatment avoids singularities for circular and coplanar orbits. It follows that the major axes are given
by series of periodic terms only, to all orders in the planetary masses.

1. Introduction

It is a very old question in celestial mechanics, whether the motions within the planet-
ary system, if they were subject only to the mutual gravitational attractions of its
members, would remain indefinitely of their present general nature, that is to say with
the planets moving in nearly circular and nearly coplanar orbits of about their present
sizes, or whether the mutual attractions alone would lead to the ultimate disruption
of these features. Most, and until very recently all, of the attempts to approach an
answer to this question have necessarily made use of methods of perturbation theory,
which lead to expressions for the perturbations of the orbital elements in terms of
multiple Fourier series. Now such expressions have been known since the time of
Poincare (1893, chapter XIII) not to be uniformly convergent, but, if appropriately
derived, asymptotic in the appropriate perturbation parameter, and so do not yield
firm conclusions about the properties of the motions for time intervals of unlimited
length. Nevertheless, expressions of such type have been proved, by comparison both
with observations of planetary positions over several centuries, and also with numeric-
al integrations representing time intervals of the order of a million years, to be very
many more times more accurate over long time intervals than we are entitled to
conclude on the basis of any error bounds for such expressions so far derived by
strict mathematical analysis. So we still await general methods by which the true
reliability of such expressions may be analytically derived.

Laplace and Lagrange showed that, to first order in the perturbations, the major
semi-axes of the planetary orbits are subject only to the sum of periodic perturbations,
and their theory of the ‘secular variations’ indicated stability, showing that, if short-
period terms are omitted from the equations for the perturbations, as well as terms of
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26 P. J. MESSAGE

second and higher degree in the eccentricities and inclinations of the orbits, then the
long-term perturbations in those quantities took the form of superposed periodic
oscillations, of periods between 50000 and 2000000 years (Lagrange 1781). There
remains the effects of terms of higher order in the eccentricities and inclinations, and
also those of higher order in the perturbing masses, arising from the interaction of
short-periodic terms of lower order. For a discussion of the researches concerning
secular terms in the major semi-axes, of second or higher order, see Duriez (1978).
It is a result of the developments described in this paper, that such terms represent the
beginning of power series expansions of periodic terms of the very long periods
encountered in the theory of the secular variations.

Newcomb (1874) described a method of successive approximations to lead to
expressions for the rectangular co-ordinates of the planets, consisting only of periodic
terms, some of very long period. Poincaré (1893, chapter VIII) subsequently introduc-
ed the concept of asymptotic series, and also a method of contact transformation
(called by him ‘Lindstedt’s method’, and more recently called ‘von Zeipel’s’, but surely
really due to Poincaré himself) by use of which it can be assured that each succes-
sive approximation satisfies the equations of motion to higher order in the small
parameter of approximation than its predecessor, and that no secular terms appear
at higher order. He applied this method, with various other devices, to the general
three-body gravitational problem, to show how it yields expressions for the orbital
elements consisting only of periodic terms. The Lie series method of contact trans-
formation (Hori, 1966) has the additional advantage of giving explicit expressions
for the new variables in terms of the old, and vice-versa, and so avoids any potential
difficulties at higher order associated with the inversion of implicit expressions. In
an earlier presentation (Message, 1976) this type of transformation was used, with
some modifications of Poincare’s approach, to show in principle how to produce
explicit expressions, in asymptotic series, with periodic terms only, for the osculating
elliptic elements in the n-body gravitational problem in the plane in the planetary
case, that is, where one of the bodies (the ‘primary’) is much more massive than the
others, and where the orbits of the others about the primary are nearly circular.
In the present paper, the extension of this treatment is made to three dimensions,
on the supposition that the orbits are nearly coplanar, and some other changes are
made. Some of the transformations are carried out in a different sequence to the
corresponding ones in Poincaré’s treatment. First are introduced the rectangular-
type orbital elements to represent the orientations and eccentricities of the orbits,
before the short-period terms are eliminated, to avoid any suggestion of possible
singularities corresponding to zero values of the orbital eccentricities of inclinations,
which of course really represent especially simple cases, and not singular ones.
The short-period terms are then eliminated before the treatment of the long-period
problem, so that the matrices used in that treatment are shown to be functions only of
the momenta A ;, which are constants of motion of that problem, so that these matrices
are constant. The conclusion is that, within the validity of these asymptotic expansions,
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PLANETARY MOTIONS IN PERIODIC TERMS IN THREE DIMENSIONS 27

the perturbations in these rectangular orbital elements, and the major semi-axes, are
the superpositions of periodic terms only (some of the long periods of the secular
variations). (It is to be noted, of course, that the expansion by orders of the perturba-
tions is carried out in a different way from that used in Poisson’s method, and so the
terms of a particular order cannot be identified with the terms of that order obtained
by Poisson’s method.)

Duriez (1977, 1979) has constructed a ‘global theory’ of the perturbations of the
planetary orbits, entirely in periodic terms, using a set of non-canonical parameters
for the osculating orbits, and with the use of an electronic computer to obtain the
numerical coefficients in the expressions for those parameters.

2. Formulation of the Problem

We consider, then, a system consisting of a particle P (the ‘primary’, or ‘Sun’), and n
other particles P, P,, ..., P, (the ‘planets’), moving under their mutual gravitational
attractions. We denote the mass of P; by m;, and suppose each of m,,m,,...,m, to
be small compared to m,. We use J acobx S system of relative position vectors that 18,

—

X—PP ,and, for 2<j<nx; =G, P, (1)
where G, 1s the centre of mass ofPO,Pl,...,Pj.It follows that
PP = Z
and
POGj=k§1 AI}: (j=2.3,....n), 2)
where
j
M= m, (j=12,..,n). 3)
k=0

Let us put ¢ = max, _ ..

<j<n

(m./m,), which gives a measure of the ratio of the largest
j 0

perturbation on a planet by another planet, to the solar attraction on that planet, and
let us choose quantities §; so that

8ﬂj:ijj_1/Mj (j=2,3,....n), (4)
and also choose H; SO that
8,uij=Gm0mj y=12,...,n), (5)
where G is the constant of gravitation. Then the equations of motion take the form
. OR
PR = —uBx/Ix P+ (=120 m), (6)

X;

-
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28 P. J. MESSAGE

where R is a function of the quantities ¢, f, Ixj|, and x;'x, with the property that
R — 0 as e — 0. In this limit, the problem separates into n independent inverse square
central force problems. We also note that

mj:‘gﬁj/{l —S:Bj/Mj—l}a
and so that

w; = G{m, + ¢f; + 0(e*)}.

If we takep, = ,BJXJ. as the momentum conjugate to x;, then the equations of motion
may be derived from the Hamiltonian function

Hx,p)= Y. 30}/B;,— wBy/[x,[} — R )

j=1
(where x denotes the set of n vectors X, X,,...,X , and p the set of n vectors p,,
P,,---»P,). Now each of the relative position vectors x; and its conjugate momentum

P, at any time defines an instantaneous Keplerian orbit in the central force problem
corresponding to ¢ =0, and so we may describe the state of relative motion of the
system at any time by means of the n corresponding osculating orbits. Suppose that the
osculating orbit corresponding to x; and p, =  X; has major semi-axis a;, eccentricity
e and that, referred to a fixed plane and fixed initial direction, its orbital inclination
is I, the longitude of its ascending node is §i,, the longitude of its apse is @, and the
mean longitude of P; in the orbit is 4. Then a set of canonical co-ordinates for the
whole system is

A, i

1° 2""’ n?

@y, ..., @, 80,80, ...,8)

1°

and their conjugate momenta are, respectively,

Ay, Ay, . A, T, T, ..., TT N ,N,,...,N,),

where
A= B/ (na),
M=A{/(1—e>)-1}
and

N;=A/(1—eé)(cosl,— 1), ®)

the Hamiltonian function being

H* (G, m,Q A, TLN) = =3 ¥ B23/A2 - R. ©)
j=1
(where 4 denotes the set 4,,4,,...,4,, @ denotes @,,@,, ..., w,, and likewise for

§L, A, m, and N, and this type of notation will be used henceforth to denote n-tuples.)
We will need to note that |xj| and x; X, , and hence all quantities constructed from
these, have period 27 in each of the co-ordinate angles 4;,@;, and §t;, and that x|
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PLANETARY MOTIONS IN PERIODIC TERMS IN THREE DIMENSIONS 29

and x X have the d’Alembert property, that is, their dependence on the e, I, o,

and .Q,j is such that they may be expressed in power series (with positive powers only)
in the e, sin @, e;cos @, y;sin §;, and y; cos §,, (where y; = sin (31,)), the coefficients
depending only on the a; and /lj. Also the terms in X ;- X, involving y; and y, are all of
even degree in these. Because of the periodicity in the angles, R may be expanded as a

multiple Fourier series

R=) K, cosN, (10)
v
where v denotes the set of 3n integers v ,v,,..., v,V ,v,, ...,V ,V],v5, ..., v, and
N, = -21 (v, A+ Viw, + Vi), (11)
j=

the summation in (10) being over all sets v with Z}'=1 (v; +V;+v)=0and v, 0.

Because of the d’Alembert property, the coefficient K is equal to the product of the

n quantities e!"ly"! multiplied by a power series in e, €3, ...,e2,77,73, ..., 72 the

coefficients in that series being functions of the a;,and ) 7_, v/ is even or zero.

Now the apse longitude @, is undefined when e;=0, and the node longitude
§1, is undefined when I, = 0, and since the singularities so arising are not real features
of the motion (circular orbits, and coplanar orbits, are simple cases, not singular
ones) let us use the rectangular-type canonical osculating elements, as introduced by

Poincare:

¢; =\/—(——TI§COS w,,

"= \/—(THJ) sinw,,

q;= \/fTNJ) cos §.,

p;= \/(_—m sindb, (12)
foreachj=1,2,...,n, noting that

(4, @, 86 A TL N) (4, &, q; A, 1, p)

is a time independent contact transformation. These expressions may in fact be
written

éj =\/(Aj) €;COs T},
n,=/(A)¢;sina,,
q;= 2\/(A]. +11)) 9, cosSLJ.,

and

p;=2/(A,+10)y,sin N, (13a)
where

e,=/2/{1-J/ (1=} (13b)
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30 P. J. MESSAGE

Hence the coefficient K may be expressed as the product of the n quantities 8}”"
y}”’”', multiplies by a power series in the 81? and the yf, the coefficients being functions
ofthe A . A typical term in the expansion of R is of the form

n n

A\',r,s 1_[ (8" J|+2rJ,y]\J]+ 2sJ COS Z (V /L + V w + V”'.Q,) (14)
i=1 j=1

where 4, isa function of the A;, and r; and s, are non-negative integers, and [ [_,

here denotes the product over all n values of j. In terms of the rectangular-type ele-

ments, the typical term becomes the real part of

H{ &7 +n7)r(q; +p?) Sf}exp< ) V/%—)X
j=1 j=1
<[T{(&+ian )il g; +ioip)"},  (15)
j=1
where i? = — 1, A rs is a function of theA and o* s + 1 1fv = 0,and — 1 otherwise,
and a is + 1if v” > 0, and — 1 otherwise. Thus thlS term is of the form

B, . cos < Y vj}tj> +C,,,sin < Y vjllj> (16)
j=1 j=1
where B, and C  are polynomials in the ¢;,7;, q;, and the p,, homogeneous and
of degree |V
Also B, , _is of even degree in all the #; and also in all the p;, while C,, _is of odd
degree in all the 5, and also in all the p,.

3. Transformation to the Long-Period Problem

To separate out the long-period problem, we use the Lie series contact transformation

(4L E g A np—WA, ¢, q N, 0, p)
defined by

J
oS b 1 S
A, =N gr 22,
oz, p;(pﬂ)v S(az;)
oS il 1 oS
— — p
L T LoD S(aé; )
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PLANETARY MOTIONS IN PERIODIC TERMS IN THREE DIMENSIONS 31
and
s a1 oS
Pi=Pi—5r— L FERTIRE ( , (17)
q _p= 1 j

where S is a function of the /1;., éj, qj, J., M and p still to be chosen, and £ is the
operation defined by

=1{/.8}
_ L fofos ofes ofos
Z 31, 8N, " a¢, an, " o) o)

of 55_Q§§_ﬁis_} (18)
0N, 3%, oy, 0, dp, dq

that is, the Poisson bracket of f and S. Also we have put
LYf)=ZLL(LE(f) for p=23, ..,

where ! = 2. Iffis any function of the co-ordinates and the momenta, then wehave

! ! < 1
FAE g Anp)=f(A, &, q A0, p) Z —, (19)
If A4 & g; A, 1, p) is the Hamiltonian function for the system before this trans-
formation, and H'(X, &, q ; A, 7, p') is the Hamiltonian function after transforma-
tion, then since the transformation is time-independent,

H@,E ¢ N, 0, p)=H0 Eq; A n,p)
N © ] .
AN, E,q ;N,n,p)+ Z ;gg(H), (20)

r=1

on using (19). We proceed to choose S so that H' is independent of the /1;., by seeking
formal expansions

=) S, and H=) H, (21)
=1 =1

where S and H’, will be chosen to be of degree p in ¢ explicitly, that is, without having
regard to the implicit dependence on ¢ due to the fact that y;, and therefore A,
depend on ¢ as given by Equations (4) and (5). (In fact, if we denote ¢ by ¢, when it
appears in y; as expressed in terms of ¢ and the §,, then S ,and H' are those parts
of S and H' respectively of degree p in ¢, not taking account of the occurrence of ¢, *)
Now

A=—1Y imB/A; - R

j=1

A,-R (22)
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32 P. J. MESSAGE

say, and we may expand
R= )Y R b (23)
r=1
where R | is of explicit degree p in ¢, in the same manner. Then equating terms without
explicit dependence on ¢ in Equation (20) gives

Hy(A) = Hy(N) (24)
and equating terms of first degree in ¢ explicitly in Equation (20) gives
H,=—-R, + {ﬁo’S1}
"o 0S
1 =1 04
where
oA,
KTy
J
= W/
= n(A),
say,

n(A) = k2B3/A}

being the Keplerian expression for the mean motion of P;. Then corresponding to a
term of the form

B, cos < Y vj/lj>
=1

in R, weincludein S, the term

— B, sin ( Y v}.l})/( Yy v}.n}),
" j=1 j=1

and, corresponding to a term of the form

C”’Ssin< Y vj.lj.)
J

i—1

in R, , we include in S, the term

C,,,cos < Y vjll;.>/<z vjn}),
j j

so that H' is left equal to the terms of — R, which are independent of the 4] (with
¢; substituted for &, q; for g;, & ce.) Equating terms of second-order explicitly
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PLANETARY MOTIONS IN PERIODIC TERMS IN THREE DIMENSIONS 33

in ¢ in Equation (20) then gives
Hy= =R, +{H,.8,} +3{{H,,8,}.5,}
", 08,
="R§—Z”J‘5,{;’ (26)

j=1

where
R>2k =R, _%{{H0>S1}’S1}

which is known once S, is. (In forming these Poisson bracke.s, we remember that
each r’ is a function of A’.) Then S, may be chosen with reference to R% in the same
way that S, was chosen with reference to R, to ensure that H’, is left free of depend-
ence on the ;. In the same manner, as we proceed to each order in turn, we may
choose S so as to leave the corresponding H' independent of the 4, so that altogether
the new Hamiltonian function H' is independent of the A}, which are therefore
ignorable co-ordinates in this ‘secular’ or ‘long-period’ problem in which therefore the
A'; are constants of the motion. (Note that this process requires there to be no linear
relations between the n’; of the sort 27=1 vjn;. = 0 for integers v,. For discussion of
conditions for convergence or divergence of series of the type obtained for S, see
Poincaré (1893, Section 147), Arnol’d (1963).)

4. Treatment of the Secular Problem

We see then that H' is composed of terms, each of the type given in the expression (8),
but independent of the )u;, that is, which each of the V= 0, so that each is the real part
of an expression of the form

ALy T T02 @ 5 pi) (€ o) g + iop)) ! 27)

Jj=1

1

with Z;.‘zl (v; + v;.’) = 0, and such that Z;:I v is an even integer. Thus H' is a function
’ L 12 12 ergr I 12 12 ot rot

of the Aj and quantities of the types <; .+ N7 Sl TN 4a; + P d M, + Pipys and

¢'q;+ n'p;. The terms of lowest degree in the &', ¢, 1;,and p’ (apart from the term

independent of them) are of degree two, and necessarily take the form

Y K (& &+ + Kaldia, + pipy) (28)

IR3)
the summation being over all pairs (j, k), the coefficients K, and K7 being functions
of the A’ only (Clearly we may always choose these coefficients so that K, =K,;
and K3 = Kj;.) The ‘secular variations’ theory of Laplace and Lagrange corresponds
to the retention in H', of terms of this type only, so that the equations of motion for
the rectangular-type variables ¢»q;.1;, and p; in that theory are linear in those
variables. We now set out to construct a theory in which terms of all orders are retain-
ed. Linear transformations may be chosen to diagonalise the quadratic forms in (28),
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34 P. J. MESSAGE

defining

F

S
Il
M=
_‘Q
1] M =

n n
— Y —
Z Qpirms D Turr= 2y Gy Py forr=12...n  (29)

j=1
where the a,; are functions of the A;, to be chosen. In order to ensure that
A, & q 5N, p)—= (2, 0547, 7)

(where o denotes the 2n-tuple G,,0,,...,0,,,and similarly for 7) is a contact trans-
formation, we find that we must have

. 0 if j#k
0 Z“U* {liszk

L 0 if j#k
(11) ; n+rn+] n+rn+k—{1 lf ]=k

(i) Aj=A7 for j=12..,n,

and
(iv) =4 — Z >y rr é’A’ a,o,, for j=1,2,..,n, (30)
r=1s=1k=1
so that, if we choose a,,, ;=a,,,;=0for I Sr<nandl<j<n, then the 2n by 2n

matrix (a,;) is orthogonal. Hence the equations (29) may be inverted to give

n
532 Z r_] r’ Z ar] r?

n

S
=
Il
1=
S

n+rn+j n+r’ Z n+r,n+an+r’ for j:1,2,...,n. (31)

r=1 r=

The transformation is time-independent, so the new Hamiltonian function, H”, is
given by
H”(i”’ 0-; A”? T) = H/(A’,> 6/5 q/; AI’ r]’? p/)'

The quantities &2 +n'%, && +nm. 47 + v, dq, + Pip,, and /&, + pin;, may be
expressed in terms of quantities of the type 62 + 1> and 0,0, + 1,7, and so H” may be
expressed in terms of these latter quantities and of the A]. We may choose the g, so
that

non 0 if r#s
2 Zaijjkask:{lA if r=s (forr=1,2,...n)

j=1k=1 2°7r

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1982CeMec..26...25M

75, . —Z5M

TB20ENET .

rt

PLANETARY MOTIONS IN PERIODIC TERMS IN THREE DIMENSIONS 35
and
z": i K {O if r#s
a ; o d =
n+rn+j otk n+s,n+k 1 : _ .
Preie’ A ., if r=s(forr=12,...,n) (32)

if the eigenvalues, 4,, and 4, ,, of the matrices (K ;) and (K%), respectively, are all
different. (These eigenvalues are, to first order in the ¢, the frequencies in the Laplace
and Lagrange secular variation theory.) Then

" 1 - " 1 2”
H =~ XA Kot 5 3 A0} +3)
j= r=
+ terms of higher order in the o, and the 7, (33)
where K|, is a function of the A7 only, of order &.

We now return the problem to action and angle form by making the further contact
transformation

(K, 05 A, D (1, 03 A", Q)
defined by
o, =/(—2Q)cos w,
1, =/(=2Q)sinw, (r=1,2,...,2n)
and
A =ALA"=A] (j=12,....n), (34)
The new Hamiltonian function H” is given by
H///(i///’ CO;A”/, Q) = H//(i//’ O_ ;A/I, T),

From (34) we see that 6,0, + 1,7, = 2\/ (Q,Q )cos(w, — ), so that H” is expressible
in terms of quantities of this sort and of the (2, and the A7, and so may be expanded
as a multiple Fourier series of the type

2n
H”" = ZKV(Ama Q)'COS< Z vrwr>’

r=1

the coefficient K, having 2n factors each of the form Q2! and the summation is

over all 2n-tuples v = (v,,v,, ...... ,v,,) for which 2" v =0. Then
" 1 < m2 "
m - L3 epinr -k, - R
i=1 (35a)
where
2n
R"=— ) AQ + terms of higher order in the Q,. (35b)
r=1

The Q, are quantities of the order of the square of the eccentricities of the orbits, and
of their inclinations to the reference plane, and we suppose all of these to be small,
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36 P. J. MESSAGE

or to be able to be chosen small, in the planetary problem. We can proceed by use
of a Lie series type transformation to derive series expressions to represent the com-
plete secular motions, if we use a small parameter of the small size of the Q . In fact,
denote by p a constant chosen to be of the order of magnitude of the largest of the
Q , and the expressions will be developed in powers of p. Now the equations of
motion for the w,  and Q are

X 6R/// . aRNl
Cl)r——a—glr, Qr_a—(l)r (r—1,2,....,2n) (36)

In order to arrive at the expansions in powers of p, first put
Q =pﬁr r=12,...,2n)

and
Rw — pﬁ, (37)
so that the equations of motion for the w, and the O are
0R &« R
B, = & R 12 ..o,

T T o,

and we may think of — R as the Hamiltonian function for the w, and the ﬁr. Consider
the expansion of R in powers of p,

R=Y R,
p=0
where R , 18 of degree p in p, and so

~ 2n ~
Ry=—> A0,
r=1
where we recall that 4, = Of(e).
Now we may carry out a Lie series type transformation

(o, Q) (w*, O¥)

using a function T still to be chosen, the transformation being defined by

oT & 1 oT
w,=w:“+55;+2 3’%( )

ip+ 1) o€*
and
~ o~ oT = 1 oT
O =0x— - gIz( > r=1,2,...,2n) (38)
bw¥  Z(p+ D! T\ do¥

so that the equations of motion for the w* and ﬁj‘ are

OR* ~  OR*
wr —— — — ,Q:k: % (r: 1,2,..,2”), (39)
where oL 0w
R¥(w*;0%) = R(w; D)
= R* 0%+ ¥ I%z;(ﬁ). (40)
p=1£"
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PLANETARY MOTIONS IN PERIODIC TERMS IN THREE DIMENSIONS 37

We now seek expansions
= ,,;R"’ T= ; T, 1)

in which each of ﬁ: and Tp is of degree p in p, and will choose the T , to leave R*
independent of the w*. Equating terms independent of p in Equation (40) gives

2n
Rr=R,O%=- Y 40
r=1

and equating terms of order p gives

R’f ‘—‘Rl + {Ro’ Tl}
- 2n 67"

=R, + L

! r=1 raa)*

Corresponding to each term K cos(} v.w) of R ,» we include in T1 the term

r r r

K, sin(}. v,0*)/> v A, so that R* is left as the sum of those terms of R, which are
1ndependent of the w*. We note K is of degree one in p and at least one in ¢, so that
this term in T , 1s of degree one in p, and at least zero in e. Then we equate in turn

terms of each higher order p in p in Equation (40), obtaining

raw*’

where @  consists of a sum of terms computed from the R for g < p and the T for
q<p, each of which is known or chosen at that stage, so that T may be chosen to be

of degree p in p and of degree at least zero in ¢, and to leave R;‘ independent of the

*
COr:

Now define QF = pﬁj‘ forr=1,2,...,2n, and consider the transformation of the
whole system

(A", 0; A, Q) (A%, o*, A*, QF), (42)

where AT = A7 forj=1,2,...,n Put
T(w* ; A*, Q%) = pT.
Then for any function fof the w*, A*, and Q*, we have, writing
J(@*; A%, Q%) = F(o*; A%, Q¥),
» a2 (0f 0T of 0T\
5 )

T = 2\ 6w* 6% o0 dort

Z of oT _ of 10T
B Ow* oQ* 5Q*p6w

={f. T},
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that 1s,

so that
Q,=pQ,
~. 0T & 1 oT
= * — P
P{Qr aTaw:k p;1(p+ 1! T(aw:k
X 1 oT
—_Ox _ p
— -z T L 0 o
and

so that if we also put

T & 1 oT
" — * p
A=A a/\>'<+p;1 (p+1)!gT<

ON*
j

=1,2,...,2n) (43)

> (J=L.2,...,n), (44)

then Equation (42) defines a Lie series contact transformation. The Hamiltonian

function for the new variables is
H*(A*, 0*; A*, Q¥)= H"(1", w; A", Q)

1 mz
P

=

1

-~y 5 wBiny -k,

j=1

2ﬂ3//\*

|
DO — ‘\l\)l —
e £M=

2ﬁ3//\*2

-

say (usmg (40))

R/I’(a); A/”’ Q)
— pR(w; A", Q)
K, pRv(ors A%, 3%

— R*(A*, Q%)

(43)

where R*(A*, Q*)Epﬁ*(a);";A*, Q*), which is independent of the w*. All of the
co-ordinates, /1;.“, and w¥*, are now ignorable, so that they are linear functions of the
time in the motion represented by this Hamiltonian function, and their conjugate
momenta A¥ and €, respectively, are constants of that motion. The formal series
representing the solution of the original problem for the Keplerian elements 4,
¢;»4;-Mj,n;, and p;, is then given by the explicit expressions (43), (34), (31), (30) (1v),
and (17) in turn. Thus each of these elements is represented by a series, in ascending
powers of both ¢ and p, composed entirely of terms each of which is the product of a
function of the constant momenta A¥ and QF and the sine or cosine of a linear com-
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bination of the /1;!‘ and the w}, that is, of a linear function of the time. Since a; =
= Af / (,ujﬁj?), for each j, this also applies to the major semi-axes a;.
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