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questions

1) what is the nature of debris disks?

2) what do they tell us about planet 
formation histories of nearby stars?

3) a new method of planet detection? 



continuation…
• from the proto-planetary 

disks lecture:
– no gas seen after ~10-15 

Myr; very little dust
• but why is there Solar 

System dust at ~4.5 Gyr?
– what about the late stages 

of planet formation?
• main Earth-assembly 

phase at ~15-40 Myr



• systems in this lecture have much fainter 
dust, on more compact scales, seen at 
much older ages     Wyatt, Dent & Greaves 2003



nature of debris disks
• discovery:

– calibration observations of 
IRAS in 1984 discovered a 
huge 'excess' towards Vega, 
the standard A0 star

• but main sequence, ~350 Myr
– primordial dust should not 

survive so long - in a gas-free 
disk, strong effects of:

• radiation pressure
• Poyting-Robertson drag
• break-up in collisions



origin of debris
• short destruction timescales mean that dust 

around main-sequence stars must be 
continually regenerated
– from collisions among comets or asteroids

• producing large dust fragments within thermal 
emission in the mid-infrared to millimetre



epochs

• ~10 Myr: end of 'proto-planetary disk' 
– large, massive disks… some remnant gas…

structure shaped by newly-formed giant planets?

• 10's to 100's Myr: completing terrestrial planets
– debris common… fixing final planet locations? …

cataclysms?

• Gyr's: main epoch for Solar analogues
– debris rarer… steady grinding … impacts on planets



observations
• from space or high mountain sites

– wavelengths strongly absorbed by atmospheric 
H2O etc. 



observing limitations
• angular resolution

– typically a few arcsec, or tens of AU at distances to 
nearest stars… only resolve major features

• background confusion
– e.g. high redshift starburst galaxies: similar dust SED

• photospheric flux
– dust fluxes are a few mJy; stellar light is dominant in 

mid-/far-infrared (ok in submillimetre)
• can not detect IR excesses ~20% or less: e.g. stellar 

atmosphere model uncertainties ~5% 
… higher resolution needed to separate star and disk



expectations
• within ~1st Gyr:

– enhanced (i.e. detectable) dust production after:
• stirring by migrating planets 
• catastrophic collisions (~1000 km bodies?)

– dust rings can be a sign of planet formation
• once a body ~Pluto size forms, it stirs up the orbits of 

surrounding planetesimals: more collisions
• speed of formation depends on dynamical time (period 

~ M*
1/2 a3/2): waves of dust appear moving outwards

• at later times:
– steady-state levels of dust from random collisions?

• but can be >> than in Solar System



Kenyon & Bromley 2002, 2004
left: planetesimals; right: with planets (radii to 3000 km) 
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• actual timescales 
depend on M*, disk 
radius + initial disk 
mass   Wyatt et al. 2007

– in the Solar System, 
formation of large 
bodies finished early 
because the radius is 
only ~50 AU

• so, similar stars with 
larger primordial 
disks could still be 
forming planets at 
Gyr ages 



• late stirring by planets could explain why only 
some stars have detectable debris at late times 
Dominik & Decin 2003

– curves show log(start time in yrs) for delayed stirring 
events; symobols are observed debris systems



signs of planets

• clues from seeing debris:
– evidence that planetesimal formation got started! …

and reached sizes of at least 10's km 
• largest bodies to have undergone one collision at 

Gyr-ages of stars
– estimate of the size of the primordial disk

• important for the surface density and so the planet 
forming history

– disk structure that requires planets to explain
• offset, cavity, spiral, warp…
• clearest examples are resonances



• NB, disk structure varies with wavelength 
– different sized grains are trapped in resonances  

more or less effectively by gravity of planet
• plot shows different beta values, which is ratio of stellar 

radiation force to stellar gravity    Wyatt 2006



observed systems
• stars ~3-30 pc 

from the Sun
• ~20% of normal 

main-sequence 
stars
– the Sun is in the 

other ~80% of 
'clean' systems



0.5 
microns

1-2 
microns

10-20 
microns

70-450 
microns

850 
microns 1-3 mm

Epsilon 
Eri

Fomalhaut

Vega

AU Mic

HD 
139664

HD 53143

Beta 
Pictoris

HD 
107146

HR 4796A

HD 
141569

HD 32297

BD +31 
643

0.5 
microns

1-2 
microns

10-20 
microns 850 micronseta Corvi

tau Ceti

'rogues 
gallery'

(Paul Kalas 
website)



early stage
• at ~10 Myr: beta Pic 

and HR4796 A 
already show signs 
of perturbations by 
planets

• both are A-stars
– only similarly young 

low-mass object is 
the M-star AU Mic

• asymmetric disk



Vega
• archetype - but not

typical structure

• halo of blown-out 
grains (mid-IR)…
vs. distinct clumps 
(submillimetre)
– effects of planetary 

migration, stirring of 
planetesimals, and 
trapped vs escaping 
particles



Fomalhaut

• both A-stars ~200-300 
Myr old… but Fomalhaut 
disk is unlike Vega's
– no halo
– narrow ring system

~25 AU wide at 140 AU
– single distant clump

• suggests a very distant 
planet, at ~100 AU?



epsilon Eridani
• K2 star, 0.85 Gyr old

– dust extends to ~100 AU 
(about twice as large as 
Solar System Kuiper Belt)

– central cavity to ~30 AU
– multiple clumps
– only system with time-

resolved motion

• archetype of many?
– e.g. recent HST image of 

HD 53143
100 AU



tau Ceti

• G8 star, 10 Gyr old
– most like the Solar 

System in size, with 
radius ~55 AU

– but, 20x dust flux of 
Kuiper Belt

• many more comets, 
at twice age of Sun

– no analogue to 
Jupiter… many 
infalling comets?

Size of Pluto’s orbit

850µm



global properties

• rings, not filled disks
• also infered from SED's of unresolved systems

• many perturbed disks 
– planets at tens of AU… needs outwards migration?

• most disks larger than Solar System
– radii up to 300 AU; descendants of T Tauri disks?

• little connection to 
– age, spectral type, metallicity, rotation, companion 

stars, planets



planet formation and migration

• outwards migration 
increases planetesimal 
collisions + traps dust
– in resonant positions, 

e.g. 2 orbits of comets 
for 3 orbits of planet

– hence, infer position of 
planets! … uniquely 
sensitive at tens of AU

• example: a Neptune-
mass planet that is now 
at 65 AU from Vega



• a similar process may have happened in the 
Solar System                                (Eric's lecture)

– comet belt was stirred by shifting orbits of the gas 
giants, resulting in the Late Heavy Bombardent of the 
Earth and Moon, at ~700 Myr?   Gomes et al. 2005



terrestrial planet construction
• some stars in clusters at 10's Myr show debris

– possibly a signature of collisions among big 
planetesimals, in the terrestrial planet building epoch



planet detection
• central clearing in debris disks

– either imaged, or infered from 
the SED: lack of hot dust near 
the star

…but, this is ambiguous re 
planetary systems

• planet eject particles crossing 
their orbit   Liou & Zook 1999

– but in detectable debris disks, 
collisional grinding will also 
remove grains near the star  
Wyatt 2006



warping

• distortions of disk plane could be due to planet 
on inclined orbit
– but also (at large distances) disk can be perturbed by 

fly-by of another star, e.g. beta Pictoris  Kalas et al. 2000



offsets
• a planet on an eccentric orbit can force dust 

orbits to be offset with respect to the star
– (approximately?) solvable for planet orbit



resonances
• resonant clumps require a 

planet
– can be rather proces 

solutions, e.g. in the case of 
Vega, position and direction of 
motion of planet     Wyatt 2003



tracking rotation
• for one system so 

far: rotation of the 
clump pattern in the 
epsilon Eridani ring 
over 5 years
– consistent with a 

planet at ~30 AU that 
both 'drags' the 
clumps at its own 
period, and clears 
the inner edge of the 
dust ring
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future

• higher-resolution imaging 
– Herschel, JWST: fine structure of (warm) disks
– ALMA at <0.1": confirm rotations within ~ 1 month!

• unbiased surveys: what makes a star have 
debris?
– e.g. SCUBA-2 survey of 500 nearby main-sequence 

stars, 2008-2009      (see Neil's poster upstairs)
• origin of debris, system properties, effects of debris on 

future planet-finding missions targeting nearby stars



SUPA Astrobiology
• comet belts and habitability

– many comets means high impact rates on terrestrial 
planets, such that land masses could all be molten…
even at low Kuiper Belt-levels of comets, need a 
Jupiter analogue to deflect infalling comets or life 
could be very dangerous!

• nearest system identified with both low debris and a 
'shield planet' is 47 UMa at 14 pc

• need to find some closer targets for 'habitable Earths'!


