
Structure formation

Consider a flat, matter dominated universe
Ignore the cosmological constant - it wasn’t (very) important

at high z when the first structures were forming

Imagine a spherical volume of the
universe which is slightly denser 
than the background.
How will this overdense region
evolve with time as the Universe
expands?

Recall Birkhoff’s theorem - gravitational force inside a sphere
depends only on the matter inside

Overdense region behaves exactly like a small 
closed Universe! ASTR 3830: Spring 2004
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Schematic evolution:
• Density contrast grows as universe expands
• Perturbation `turns around’ at R = Rturn, t = tturn
• If exactly spherical, collapses to a point at t = 2 tturn
• Realistically, bounces and virializes at radius R = Rvirial
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Can use the virial theorem (textbook Section 3.1) to derive
the final radius of the collapsed perturbation.
Let perturbation have mass M, kinetic energy <KE>, and
gravitational potential energy <PE>.

Virial theorem: <PE> + 2 <KE> = 0 (in equilibrium)
Energy conservation: <PE> + <KE> = constant
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Note: ignore prefactor in potential energy here

Conclude: 
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How dense are collapsed objects?
Can apply the solution for a closed universe to calculate 
the final overdensity in a spherical collapse model:
Friedmann equation:
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k = 0 solution derived previously

Parametric solution for a closed,
k = 1 universe (not derived here)
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Calculate the turnaround time for the collapsing sphere
by finding when the size of the small closed universe has
a maximum:
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At turnaround, y = p, which corresponds to time,
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The scale factor of the perturbation and of the background 
universe are just:
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The density contrast at turnaround is therefore:
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At the time when the collapsing sphere virialized, at 
t = 2 tturn:

• Its density has increased by a factor of 8
• Background universe’s density has decreased by a

factor of (22/3)3 = 4
Final result: a collapsing object virializes when its density 
is greater than the mean density of the universe by a 
factor of 18 p2 ~ 180…

First objects to form are small and dense - these later 
merge to form larger structures - `bottom-up’ structure
formation.
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Non-spherical collapse
Real perturbations will not be spherical - can gain qualitative
insight into real behavior by considering collapse of an 
ellipsoidal overdensity:

Fastest collapse in the shortest direction:
• Perturbation first pancakes
• Then forms filaments

Filamentary structure is seen both in numerical simulations
of structure formation and in galaxy redshift surveys.
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