Astrophysics ASTR3415
Homework Assignment No.2
(Due 10/24/05, 5pm)

1. In a particular coordinate system, the components of a (2,0) tensor T are symmetric (meaning that 
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 for all i, j).  Show that the components of T must be symmetric in any coordinate system.
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2. An orthogonal metric is one for which 
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As you saw in the lectures, the general expression for the Christoffel symbols in terms of the metric and its partial derivatives is
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where the repeated upper and lower index 
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 indicates summation over 
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 and commas denote partial differentiation.  By eliminating the terms in the above expression which are zero, show that for an orthogonal metric
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(note: the repeated usage of 
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 and 
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 in the above expressions does not denote the Einstein summation convention.  If you’re unsure about the notation here, come and ask me).
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3. The invariant interval, expressed in polar coordinates 
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, for 2-D Euclidean space is given by
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Use the results of Q.2 to show that
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4. Consider the vector field 
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 with Cartesian components
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a. Using the transformation law for a (1,0) tensor and the results of Q.7 of Homework Assignment 1, show that the components 
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 of the vector field with respect to the usual polar coordinate basis 
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 may be written as
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b. Using the formula for the covariant derivative 
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, verify that the covariant derivative of 
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 has the following components with respect to the Cartesian basis
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c. The covariant derivative of a (1,0) tensor transforms as a (1,1) tensor.  Using the transformation law for the components of the covariant derivative
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show that
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d. Now, using the results given in Q.3 and Q.4a, apply the explicit formula for the covariant derivative (as given in Q.4b only this time in a polar coordinate system) and verify that you get the same result for  
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 as you did in Q.4c.  (This will also be the case for all the other components of the covariant derivative).
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5. In relativity we frequently measure time in units of length – e.g. we replace 1 second by the distance (in metres) travelled by light in this time.  This conversion is equivalent to setting 
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a. Given that in SI units
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b. Hence show that setting 
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 is equivalent to measuring mass in units of length, such that
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c. The Schwarzschild radius of a star of mass 
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 is given by
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i. the Earth (mass 
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ii. the Sun (mass 
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iii. a supermassive black hole (mass = 
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solar masses)
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