Dynamics of descending plasma knots in solar prominences

R. Oliver, R. Soler, J. Terradas, T. Zaqarashvili, M. Khodachenko

Physics Department, University of the Balearic Islands, Spain

Falling prominence knots

Introduction	Model	Results	Conclusions
0000	000	0000000	
<u> </u>			

Falling prominence knots

Time-height diagram (Chae 2010): stack of 50 H α slices taken with 25 s cadence. Vertical size is 35,000 km. Several prominence knots descend vertically at a roughly constant speed.

Features of falling prominence knots:

- Motions along vertical path.
- Knots have either roughly constant velocity (in the range 10–60 km s⁻¹) or small acceleration (100 m s⁻²) compared to that of gravity.

	l		
000•	000	000000	0
Introduction	Model	Results	Conclusions

- Falling prominence knots
 - How do they originate?
 - Do prominence knots move across a presumed horizontal magnetic field?
 - Why do they have small or even no acceleration?

Introduction	Model	Results	Conclusions
000●	୦୦୦	0000000	0
Falling prominence	knots		

- How do they originate?
- Do prominence knots move across a presumed horizontal magnetic field?
- Why do they have small or even no acceleration?

Aim: to investigate the dynamics of dense knots falling in quiescent prominences.

Introduction 0000	Model ●○○	Results 0000000	Conclusions O
Model:	assumptions		
We	do not include	89 (H.S.S.S.S.S.S.S.S.	
	The knot formation process,		
<u> </u>	non-ideal effects (conduction, co	ooling),	
₹•	magnetic field.		
at co		15 医裂骨菌科	A BARREN B
Ther	n, what do we include!?		
	Hydrodynamic time evolution of environment,	a formed blob in	the coronal
•	adiabatic changes of state,		
•	motions in the vertical direction		

(1) (อ) [กษุ่ก] (อ) อ

Introduction 0000	Model ○●○	Results 0000000	Conclusions O
Model: equati	ons		
100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	A TANK I NAMES AND A DESCRIPTION	ある「いたいでないないですの	

- Three unknowns ρ , p, v.
- z-axis is vertical.
- The unknowns only depend on t and z.
- Mass continuity:

$$\frac{\partial \rho}{\partial t} = -v\frac{\partial \rho}{\partial z} - \rho\frac{\partial v}{\partial z}$$

• z-component of the momentum equation:

∂p

∂t

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\rho \mathbf{v} \frac{\partial \mathbf{v}}{\partial z} - \frac{\partial p}{\partial z} - g\rho$$

∂p

 $\frac{\partial v}{\partial z}$

Energy equation:

Introduction 0000	Model ○○●	Results 0000000	Conclusions O
Model:	initial state		
۲	In the initial state the vertical sp	eed is zero: $v(z,$	t=0)=0.
	The background pressure and de (uniform initial temperature, T_0)	nsity are vertically	y stratified
	$p(z, t = 0) = p_0 e^{-z/H}, \rho(z, t)$	$= 0) = \rho_0 e^{-z/H},$	$H = \frac{2RT_0}{T_0}$

g

• A concentrated density enhancement is added:

Parameter values: H = 120 Mm $\rho_0 = 5 \times 10^{-12} \text{ kg m}^{-3}$ $z_0 = 50 \text{ Mm}$ $\sigma_{b0} = 10^{-10} \text{ kg m}^{-3}$

Simulation time: 1000 s

Introduction	Model	Results	Conclusions
0000	000	●000000	0
Density			

- The condensation keeps its density and shape as it falls.
- If the knot were to fall with the acceleration of gravity, it would reach z = 0 at $t \simeq 540$ s.

• Knot then attains a roughly constant speed $\simeq 15$ km s⁻¹.

Introduction	Model	Results	Conclusions
0000	000		0
2			

Pressure

- Sound wave generated at the initial knot position (sound speed $\simeq 235$ km s⁻¹).
- A strong pressure gradient is generated at the knot position.
- Established pressure gradient travels with the knot (its position is given by the green line).

• Pressure structure under and above the knot is rearranged.

Introduction	Model	Results	Conclusions
		0000000	

Maximum descending speed

- Similar dynamics are obtained for other parameter values.
- The local coronal density depends on the initial knot height, the coronal density at z = 0 and the coronal scale height $(H \propto T_0)$.
- The density ratio (initial knot density to local coronal density) determines the maximum falling speed.

• Observed knot velocities require knot to corona density ratios between 10 and 120.

- Initial acceleration phase lasts much longer ($\simeq 800$ s compared to $\simeq 200$ s).
- Maximum falling velocity is much higher ($\simeq 100$ km s⁻¹ compared to $\simeq 15$ km s⁻¹)

Introduction		Model	Results	Conclusions	
0000		000	○○○○○●	O	

Larger knot density: sound wave emission

- Knot density and velocity display damped oscillations.
- These oscillations are revealed after fitting and subtracting a third degree polynomial + wavelet analysis.
- Horizontal lines: theoretical periods of leaky sound waves.

Conclusions			
Introduction	Model	Results	Conclusions
0000	000	0000000	•

Summary of results

- Acceleration phase followed by more or less constant speed.
- Presence of mass condensation leads to a pressure gradient that opposes gravity.
- Maximum falling speed increases with density ratio. There is a very good correlation between the two quantities.
- Damped oscillations because of sound wave emission. Detectable as periodic changes of the knot density and velocity.

