Magnetic Topology of Quiescent Prominence Bubbles

Jaroslav Dudík ^{1,2,3}, Guillaume Aulanier ³, Brigitte Schmieder ³, Maciej Zapiór ⁴, Stanislav Gunár ^{5,6}, Petr Heinzel ⁶

 ¹ – DAMTP, University of Cambridge, UK
 ² – DAPEM, FMPhI, Comenius University, Bratislava, Slovakia
 ³ – LESIA, Observatoire de Paris, Section de Meudon, France
 ⁴ – University of the Balearic Islands, Palma Mallorca, Spain
 ⁵ – School of Mathematics and Statistics, University of St Andrews, Scotland, UK
 ⁶ - Astronomical Institute of the Academy of Sciences, Ondřejov, Czech Republic

RAS Discussion Meeting, London, February 21, 2014

Outline

- I. Motivation: Bubbles and Plumes in Prominences *Observations:* Quiescent Prominences from SOT and AIA *Models:* Rayleigh-Taylor instability in dipped geometry
- II. LFFF Models of Prominence Magnetic Field 2.5D topologies: OX/OF topology
- III. The Polar Crown Prominence of April 20th, 2011
 Observations: Hα, SDO/AIA 304Å, 193Å
 Connection to magnetic field and emerging flux
 Toy models of quiescent prominences
 Magnetic topology: Bubbles, bright arches and separators
- IV. The Polar Crown Prominence of June 22nd, 2010 Observations: SDO/AIA 304Å, 193Å Symmetric and Asymmetric models "Large" and "Small" bubbles: Within body and within feet

Hinode/SOT Observations

Many "vertical" threads

- plane-of-sky velocities, i.e.,
 "vertical motions" up to
 2 15 km s⁻¹
 (time-slice technique)
- Hα Doppler-shifts:
 - counter-streaming
 - velocities up to 15 km s⁻¹
- => Threads are NOT vertical, but highly inclined to LOS

Schmieder et al. (2010), A&A 514, A68

Berger et al. (2011), Nature 472, 197

Hillier et al. (2011), Astrophys. J. 736, L1;

Hillier et al. (2012), Astrophys. J. 746, 120

II. Prominences: LFFF Models

Force-free fields: $\nabla \times B = \alpha B$, $\nabla \cdot B = 0$,

$$B_{x} = \frac{B_{(n_{x};n_{y})}}{k_{x}^{2} + k_{y}^{2}} (- \alpha k_{y} sin(k_{x}x) sin(k_{y}y) - lk_{x} cos(k_{x}x) cos(k_{y}y))e^{-lz}, \qquad (4)$$

$$B_y = \frac{\widetilde{B}_{(n_x;n_y)}}{k_x^2 + k_y^2} \quad (\quad lk_y \sin(k_x x) \sin(k_y y) \\ \quad - \alpha k_x \cos(k_x x) \cos(k_y y)) e^{-lz} , \tag{5}$$

$$B_z = \widetilde{B}_{(n_x;n_y)} \sin(k_x x) \cos(k_y y) e^{-lz} .$$
(6)

with $\widetilde{B}_{(n_x;n_y)}$ is the amplitude of the harmonic $(n_x; n_y)$, and

$$k_x = n_x . 2\pi / L_x \,, \tag{7}$$

$$k_y = n_y . 2\pi / L_y \tag{8}$$

$$= \sqrt{k_x^2 + k_y^2 - \alpha^2} \,. \tag{9}$$

Aulanier & Démoulin (1998), Astron. Astrophys. 329, 1125

Prominences: 2.5D Topologies

Prominences: 3D OX Flux Ropes

Aulanier et al. (1999), Astron. Astrophys. 335, 309

III. Prominence of April 22nd, 2011

Prominence of April 22nd, 2011

Dudík et al. (2012), Astrophys. J., 761, 9

18 Minutes Later – a Plume

08:48 UT 193 Å

How to Create a Bubble...

20

0

x(Mm)

40

- strong parasitic bipole
- no magnetic shear

Generic Bubble: Magnetic Topology

Sheared Bipole: Cusp-Shape

Tree-shaped Prominences

096

Schmieder et al. 2013, ApJ, 777, 108

HINDLE SULTWE TO-OCT

860.14

Emerging bipole: The Bubble

Emerging bipole: The Bubble

Dudík et al. (2012), Astrophys. J., 761, 9

IV. Prominence of June 22nd, 2010

The Unsheared Model: Off-Limb

Symmetric and Asymmetric

Summary

- Bubbles and plumes are not brighter than the surrounding corona
- Bubbles are topologically complex structures
 - magnetic arcades, not dips
 - null points and separators
 - plumes due to reconnection at the separator?
- The magnetic field of the quiescent prominences can be modeled with minimum of physics
 - OX topology and 1 2 sheared bipoles

The configurations approximate well the observed prominences

Thank you for your attention