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Abstract

This work presents separate two- and three-dimensional generative frameworks that use Generative Adver-
sarial Networks to create realistic samples of cosmological structure. Provisional samples of the virtual cosmic
web are obtained from N-body simulation data that is restricted to volumes and projections of size 80h−1 Mpc.
The generated samples are shown to demonstrate a high degree of coherence with their simulated counterparts
and the distinction cannot be made visually by human experts. The nature of the separation between gener-
ated and N-body simulation samples is quantified with repeated tests of the Kullback-Leibler divergence on
ensembles of samples alongside samples with uniformly distributed pixel densities. It is found that the imple-
mentations secure a coherence to within the same order of magnitude as a self comparison of the simulation
samples. The main advantage of the generative approach to simulating large volumes of cosmological structure
is that much less time is required than creating N-body simulations on high performance computing resources.
Future explorations of the method that are relevant to the next paradigm in cosmological simulations are also
outlined. The most pertinent application being for a generator that can produce samples that maintain high
statistical coherence to simulation data at various redshifts. At this stage, the generative artificial intelligence
can then be said to be capable of generating an artificial universe.

1 Introduction

Beyond the distance scales of galactic diameters, to-
ward the sizes of galaxy clusters and beyond, matter
in the Universe appears as a webbed structure of fil-
aments across volumes of emptiness known as voids.
This network of luminous formation is known as the
cosmic web [1–5]. The cosmic web as a distribution of
matter contains artefacts linked to the state of the pri-
mordial universe, the nature of early universe pertur-
bations and more fundamental physics to describe this
era in cosmic time. The emergence of the structure is
from an early period of exponential expansion, known
as inflation [6]. This structure has been observed by
missions such as [7, 8] and by weak gravitational lens-
ing [9] through distortions, or shears [10], to images of
distant galaxies caused by the large-scale structure of
the universe.

The webbed structure is native to the well-
established Λ Cold Dark Matter (ΛCDM) cosmology
but its exact origins are not well understood [11] and
at present it is believed that the structure originates
from an amplification of quantum fluctuations as a den-
sity perturbation in the early universe [12], which is
described by inflationary cosmology [13]. The matter
distribution of webbed structure in the universe holds
information on the true nature of dark matter, dark
energy, the laws of gravity and the mode of galaxy for-
mation [14–18].
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Simulations that trace the evolution of phenomena
such as structure formation, galaxy populations and
the distribution of matter are imperative to our under-
standings of cosmological measurements. Our insight
into the high-redshift deep field will increase with the
amount of information provided by next generation ob-
servational missions such as [19–21]. As a consequence,
so too does the need for higher resolution and more ca-
pacity in the volumes of simulated universes. Evidence
for new theory in cosmology can come from greater
observational resolution. This level of detail informs
research into baryonic acoustic oscillations within the
matter distribution [22–24]. Undoubtedly new infor-
mation will emerge on these dilemmas in cosmology.
This sets the next paradigm of the field in the study of
smaller scales of cosmological structure.

Clearly there is a need for coherent simulations that
are summarised by the same statistics as galaxy sur-
veys such as the 2dF Galaxy Redshift Survery [8].
These simulations will then contain the same envi-
ronments of large scale structure as observations to
check experimental measurements with. Obtaining
these more realistic simulations [25, 26] involves using
greater computational resources and theoretical analy-
sis. The latter of the two, due to the complexity of the
non-linear physics that describes the growth of struc-
ture over cosmic time, shows some differences to ob-
servations [27]. A resource that could effectively re-
produce the statistical properties of observations and
simulations by learning the distribution in an advanced
simulation (and therefore potentially of nature) with-
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out any assumptions of these properties would be of
great value. This work aims to validate a method for
obtaining a resource capable of achieving this objective
by synthesising both 2D and 3D images from existing
simulation data for two separate Generative Adversar-
ial Networks (GANs) to emulate.

Deep learning has evolved to be able to process the
statistical structure of the hierarchy of features in the
visual domain [28]. There have been a number of re-
cent applications of generative deep learning in astro-
physics. GANs have been used to create new samples of
galaxy images [29] and to obtain visual characteristics
past the deconvolution limit [30]. Other applications
use the GAN framework to generate 2D images of the
cosmic web [31] and projected 2D mass distributions,
known as convergence maps, from simulated data of
weak gravitational lensing within the environment of
an N-body simulation [32]. This report will show the
insights that the study of astrophysics can have on AI
through applications of statistics that could give new
mechanisms for maximizing the realism of GAN gen-
erated samples.

This work is organised as follows. Section 2 will in-
troduce the domain in which the methods for gener-
ating new galaxy-distribution samples originate. This
section will introduce the sub-field of generative artifi-
cial intelligence and its relevance to the experimental
method. Section 3 will describe Generative Adversarial
Networks (GANs), their analytical properties and how
these models learn to imitate datasets. Section 4 will
study the present state of the concepts from the previ-
ous sections with respect to recent research in physics
and astrophysics. Section 5 discusses some of the ap-
plications for successful potential of the work, that is,
being able to generate distributions of galaxies that are
coherent with N-body simulation data. Section 6 de-
scribes the methods of extracting and pre-processing
training data from N-body simulations, the setup of
each training loop for the GAN implementations and
the architectures of the generative models. Section 7
gives insight into the methods of comparison between
the generated and training distributions and finally
Sections 8, 9 and 10 present the results, future work
and conclusions.

2 Artificial intelligence

Artificial intelligence is the automation of a task that a
human could know how to do themselves, that is, the
automation of a classical algorithm using a machine.
The computational power of a machine is used in a
process that is instructed by a human programmer.
An example of the function of an AI system was a
game of chess between IBM’s Deep Blue system and
the grandmaster Garry Kasparov in 1997 [33]. This
definition of AI includes machine learning (ML) and
deep learning (DL) as well as more simple and mundane
algorithms.

Figure 1: A basic neural network. The weights repre-
sent the parameters. The entire network represents the
transformation y = f∗(x) that imitates the unknown
function f of the equation y = f(x).

2.1 Machine Learning

Machine learning is the use of artificial intelligence
without a pre-defined algorithm to derive the required
output from the input given to a system [34]. A ma-
chine learning system is trained by a process of repeat-
edly comparing the performance of the system against
an objective. These systems transform input data into
meaningful outputs. The system is exposed to a col-
lection of known examples of these inputs and outputs.
The transformation from input to output in the system
comes from the ability to learn representations of the
input data that can be used to find deeper patterns
in the input data [35]. Using computational resources
in this way means that ML systems can go beyond
the previous functions of tasks that are programmed
by humans. Early examples of machine learning sys-
tems include speech recognition programs [36] and hu-
man world champion level performance at the game of
backgammon [37].

Mitchell (1997) [38] defines the ‘learning’ of a ma-
chine learning system: “A computer program is said
to learn from experience E with respect to some class
of tasks T and performance measure P , if its perfor-
mance at tasks in T , as measured by P , improves with
experience E.” A task T might be the de-blurring of
a photograph or plotting the steps of a robot. The
change in the performance P of a system is calculated
in the training of the system and it is specific to the
task T . An example is the classification accuracy of a
model that classifies images or the mean squared error
objective, where the predicted labels of images given
to a model are compared to the true labels by calculat-
ing the square of their difference - both of these values
could measure the performance of an image classifica-
tion system. The experience E is a less well defined
concept that depends on whether the system uses a
supervised or unsupervised learning algorithm [39].

Machine learning consists of three types of learning
problems that an algorithm is designed to solve: su-
pervised learning, unsupervised learning and reinforce-
ment learning (the latter is outside the scope of this
report). Supervised learning represents situations in
which the training data for the system is labelled with
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its type in a dataset of objects. There are two main ex-
amples of supervised learning; the first is classification,
where a class label is predicted from exposure to ob-
jects and their labels. The second is regression, where
a numerical value is predicted from a dataset. Unsu-
pervised learning algorithms process a dataset to learn
the significant features and patterns in the dataset [40]
and this is known as clustering. Density estimation
is an unsupervised learning technique that estimates
the function of a continuous field from a discrete set of
points [41].

2.2 Deep Learning

The ideas of encoding, representation and compression
in an ML system can be organised into a model that
learns significant patterns and representations of input
data. With the features of the data that are parame-
terised by the transformations that the system saves,
the model can output an object that is dependent on
the model parameters. This object could be a vector of
probabilities representing the beliefs of a system on the
identity or class of an image. It could also be an object
with the same dimensions as the input data samples,
created to imitate an object in the data distribution.
A deep learning system organises these encodings by
their similarity to principal components in the statis-
tical structure of the data [35] using more advanced
techniques of extracting data than typical ML systems.

The most common implementation of these ideas is
through a neural network. Generally, with more in-
sight being given in Section 3 on the most relevant
models to this work, a neural network is a set of lay-
ers with parameterisations known as the ‘weights’ of
the layer. The network is a composition of layered
functions that approximate some function f that trans-
forms an input x to an output y such that y = f∗(x;θ)
where θ is the parameterisation of the layer that is
learnt by the network. Figure 1 shows a basic neu-
ral network that transforms an input x into an out-
put y. The learning means that f∗ → f and a strong
representation of the transformation that was initially
intractable is obtained. A further extension to deep
learning systems from ML systems is the ability to
learn non-linear functions of x by using a transformed
input φ(x) with non-linear transform φ. The method
of deep learning is to learn the transform φ using a
model y = f(x;θ,w) = φ(x;θ)Tw. Here, w maps
from φ(x) to the output of the model. This opens up
much more generalisable performance than traditional
machine learning algorithms [39].

This adaptability comes from arranging multiple lay-
ers of functions that learn increasingly meaningful rep-
resentations. The depth of this hierarchy differenti-
ates machine learning and deep learning, despite the
fact that systems in both fields use similar bases. The
mapping from input-to-output is through a one-way
sequence of data transformations in the layers of the

Figure 2: People that do not exist. Images created by
NVIDIA’s StyleGAN. Taken from [28].

model architecture. These representations are derived
from repeatedly exposing the system to data samples
with feedback obtained from calculating the distance
of the system from a desired objective. This feedback
is calculated by differentiation of each functional layer
with respect to its parameters whilst moving through
the parameter space on the objective function for the
model. This feedback is the result of the long stand-
ing backpropagation algorithm [42]. This algorithm
computes the gradients of the objective function with
respect to the model parameters. The backpropa-
gation adjustment to the model parameters θ is ob-
tained from stochastic gradient descent (SGD) (see Ap-
pendix E.3.1) of the objective function in the parame-
ter space of either model.

This optimisation algorithm is required to find the
optimal parameter values that give the best network
performance in the parameter space. Typical image
classification models may have ∼ 107 parameters and
above so this is not a simple task. This gives a high-
dimensional space in which a global minimum exists
for the objective function. The location of this point is
specific to the hypothesis space for the task at hand.

Deep learning methods are used in the apparatus
to give a framework for the ML architectures in the
Generative Adversarial Networks for generating new
cosmic web samples. These models are used to show
the evolving differences between artificially generated
data and simulation data. The next section explores
these ideas.

2.3 Generative artificial intelligence

Artificial intelligence research has used neural networks
to generate realistic data from existing examples and
this is known as generative modelling. These new sam-
ples cannot be distinguished from samples drawn out of
the probability distribution function of the data itself.
The StyleGAN created at NVIDIA [28] is at the edge
of modern generative AI. Despite the successes of these
images being based on human-centred perceptions, the
successes of recent research like this mean that reality
can be the reference for the products of a generative
system. This indicates the potential of generative AI
for imitating complex data types. Figure 2 displays a
sample of these artificially generated images.

Generative modelling with deep learning systems is
used to learn the probability distribution that gener-
ated the original set of data presented to the system.
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Figure 3: Schematic of the GAN framework; includ-
ing discriminator and generator networks, the latent-
space vector, dataset of samples and the backpropaga-
tion feedback to model parameters.

In a general sense this is the objective of the genera-
tive model. The result of training the generative model
can be either or both of a probability density function
or a program that can produce new samples from the
probability distribution of the target data itself. This
imitation is the ability to generate objects that could
be said to come from the original target dataset.

Being able to generate objects, such as images, comes
from creating a lower-dimensional basis of representa-
tions that summarise the statistical structure in the
distribution of the objects. This basis is known as the
latent space. The mapping from a point in the latent
space to a realistic imitation of a real object is learnt
and used by a generator model. Sampling points from
the latent space enables the generative framework to
create new samples of the original objects. The next
section will characterise the generative model used in
this work to generate galaxy distributions from simu-
lation data.

3 Generative Adversarial Net-
works

The type of generative model chosen for the objective
of this work was the Generative Adversarial Network
(GAN) invented by Goodfellow et al. 2014 [43]. The
successes of GANs are well established in a wide range
of applications on natural images [44–46] and there are
many extensions to GANs that open up a wide range
of other successful models [47–49].

Generative Adversarial Networks consist of two mod-
els known as the generator and the discriminator. The
generator must create samples that are allegedly drawn
from the same distribution as the real samples dataset.
The discriminator assigns scalars to a collection of in-
put data and generated samples that represent the
probability that each sample is real and from the data
distribution pdata or fake and from the model distri-
bution pmodel. The discriminator has access to both
real and fake samples. The training of a GAN involves
navigating the combined parameter space of the gen-
erator and discriminator network parameters to find

the optimal value of a function that gives the best per-
formance of the networks at their opposing objectives.
The metric that describes the performance is related to
the distance between the model and data distributions.
There is no need for a validation subset external to the
training data because the generator does not have di-
rect access to the training data. This is not the case
for singular deep learning networks.

3.1 Generative adversarial learning

The discriminator and the generator are neural net-
works and each network tries to reduce their own ob-
jective function. This adversarial relationship is a game
between the models rather than two optimisation prob-
lems. The optimum in this case is a Nash equilib-
rium [50] rather than a local minimum given by op-
timisation in the case of a singular neural network. In
this equilibrium the returns of the objective functions
only change by indirect influence of the other network
and at this stage the gradients for backpropagation to
either model have vanished.

The discriminator and generator models can be rep-
resented as functions D and G respectively because
of their mappings as neural networks and parameter
dependencies. The discriminator D has input x and
parameters θ(D). The generator G takes a latent space
vector z as input and uses parameters θ(G). Informa-
tion flows through the network and its parameters to
create the outputs D(x) or D(G(z)) for the discrimi-
nator and G(z) for the generator. This is the forward-
propagation from an input to an output. The model
performances are calculated with the objective func-
tions J (D) or J (G).

In the case of a GAN, the optimisation landscape
is more complex because of the simultaneous learning
of the two neural networks that both constantly ad-
just their parameters. The discriminator and generator
models in a GAN depend on parameters θ(D) and θ(G)

respectively. The models typically consist of multi-
layer perceptrons with the potential for other para-
metric components such as convolutional layers and
the parameters are the state of these components at
an epoch of training. The generator G draws noise
vectors z from a prior distribution pz. The vectors z
are passed through the generator architecture to cre-
ate a sample x = G(z;θ(G)) that is now a sample x
from the model distribution pmodel. The model distri-
bution is the distribution of generated samples G(z)
obtained from passing latent vectors z through G such
that z ∼ pz. The learning of the generator means that
the samples evolve over the training process. Eventu-
ally, the samples will appear to have been drawn from
the true data distribution pdata so that G(z) ∼ pdata.
The generated samples x ∼ pmodel and real samples
x ∼ pdata become indistinguishable.

The mapping learnt by the generator is expressed as
G :z 7→x. The discriminator D is a map from an input
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Figure 4: A diagram of the simplified two-parameter value function V for the zero-sum game in which the
generator G and discriminator D participate in; (a) - the value function in parameter space with a Nash
equilibrium point, (b) - The maximization objective for G with θ(D) = 0 and (c) - the minimization task for D
with θ(G) = 0.

of real x and fake samples G(z) to an output of as
many probabilities. The values of D(x) and D(G(z))
signify the discriminator’s confidence in the validity of
the sample. This mapping is expressed as D :x 7→ [0, 1].

3.1.1 Formulation of GAN learning

The objective functions of D and G are defined in
terms of both players’ parameters and are denoted by
J (D)(θ(D),θ(G)) and J (G)(θ(D),θ(G)) respectively. In
the most basic adversarial setting for the GAN models,
D and G play a zero-sum game where J (D) = −J (G).

During training the discriminator minimises J (D)

only through feedback from backpropagation to its pa-
rameters θ(D). The generator G minimises J (G) by
only affecting its parameters θ(G) through returns from
backpropagation related to the discriminator classifi-
cations. The minimization objectives are simultaneous
between two networks in search of a Nash equilibrium
and added together the objectives for the discrimina-
tor and generator give a value function V (θ(D),θ(G)) in
the combined parameter space (θ(D),θ(G)). Figure 4
shows the value function in the combined parameter
space for which the backpropagation gradients are cal-
culated withD and G as adversaries of each other. The
optimum parameters for each network are shown at the
Nash equilibrium. The game between the models is de-
scribed with the value function V as

min
G

max
D

V (D,G) = Ex∼pdata
logD(x)

+ EG(z)∼pmodel
log(1−D(G(z)))

(3.1)

in the combined parameter space. This equation

shows the opposition between the maximization of the
correct classifications by D and the minimisation of the
classifications by D of the generator products that are
made by G.

The Nash equilibrium is satisfied by a pair of param-
eter sets (θ(D)∗,θ(G)∗) for which no further changes oc-
cur to the objective functions J (D) and J (G) of both
networks [50]. Equation 3.1 means that the zero-sum
game for the models returns an adjustment +V for
the discriminator and −V for the generator. Figure 4
shows the equilibrium point in the parameter space and
the returns V (θ(D), 0) and V (0,θ(G)) for the discrim-
inator and generator with optimum parameters θ(D)∗

and θ(G)∗ respectively in the zero-sum game. The zero-
sum game between D and G defines an objective func-
tion J (D) for the discriminator

J (D) = Ex∼pdata
logD(x)

+ EG(z)∼pmodel
log(1−D(G(z))) (3.2)

this is from the cross-entropy discriminator objec-
tive function for the binary classification of real and
fake samples. Appendix C.3 defines cross-entropy in
this context. The expectation operators Ex∼pdata

and
EG(z)∼pmodel

correspond to the ensemble averages over
the classifications of real and fake samples respectively.
Equation 3.2 shows that the first term cannot be in-
fluenced by the generator G because here the samples
are drawn from the data distribution to which it has
no access to. Inputs to the generator z are drawn from
the prior distribution pz over the latent-space to the
model. The discriminator is given a generator sample
G(z) to classify it as fake, so D(G(z)) → 0 whereas
the generator G tries to make D(G(z))→1. The Nash
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equilibrium is satisfied for the model and data distribu-
tions becoming identical (in the ideal case) so thatG(z)
is drawn from pdata. This means the discriminator clas-
sification tends to D(x) = 1

2 for all samples x [43]. The
optimum of the generator G parameters θ(G)∗ is

θ(G)∗ = argmin
θ(G)

max
θ(D)

V (θ(D), θ(G)) (3.3)

This motivates the generator to increase the likeli-
hood of the discriminator incorrectly classifying a sam-
ple. The discriminator tries to increase its own likeli-
hood of correctly classifying a sample by minimising
the binary cross-entropy objective. The local minima
of the value function V are not necessarily Nash equi-
librium points, rather they are points that simultane-
ously minimise the objective functions J (D) and J (G).
Whilst both networks search the parameter space via
SGD of the value function, there is no guarantee of a
Nash equilibrium, this is part of what makes training
an adversarial network a difficult task.

The cross-entropy for the discriminator classification
of a sample against the true label of the sample is nu-
merically effective for a GAN in practice because this
objective does not saturate for an incorrect identifica-
tion. Because the networks try to minimize their op-
posing objectives, if the discriminators performance in-
creases enough, the generator objective function tends
to zero. This causes the generator performance to be-
come static. At all points in the parameter space the
generator objective minimization is guided by the gra-
dients from backpropagation which will reduce to zero.
At this point the discriminator cannot improve and less
information is back-propagated through the networks.

The solution, shown in [43], is to deviate from the
zero-sum ideal by inverting the target used to create
the cross-entropy objective function for the generator.
The generator’s objective function becomes

J (G) = EG(z)∼pmodel
logD(G(z)) (3.4)

Now the generator tries to maximize the log-
probability of the discriminator wrongly classifying a
given sample. This objective with the original objec-
tive for the discriminator J (D) means there are always
non-vanishing gradients for backpropagation despite
any imbalance in discriminator and generator perfor-
mance.

3.2 Experimental design of GANs

The opposing players in the zero-sum game are as-
sumed by two deep convolutional neural network
(DCNN) models. These networks use convolutional
layers to extract features from grid-like data. Deep
Convolutional Generative Adversarial Networks (DC-
GANs), first implemented by Radford et al. 2015 [51],
use these layers to create images. The DCGAN model
has shown excellent results on natural image generation
using the CelebA [52] and the LSUN-Bedrooms [53]

datasets. The DCNNs in this work are based on the
AlexNet models for image classification [54]. Despite
most of the architectural features, such as convolu-
tional layers, being used in deep learning models prior
to this publication the DCGAN architecture improved
previous GAN architectures for increased performance
in image generation tasks. See Appendix E for details
on the relevant tools used in DCGANs. The models in
the methods of this work borrow from the ideas of this
architectural basis.

3.3 Variational Auto-Encoders

Generative artificial intelligence is able to create real-
istic natural images sampled from a latent space, but
different models are able to perform these tasks. The
distinctions between them explain the choice of the
GAN in the experimental objective. The most preva-
lent models in the literature are GANs and Variational
Auto-Encoders (VAEs) [55, 56]. VAEs are known [50]
to be well-posed to learn latent spaces that are struc-
tured, where specific directions encode strong variation
in the data whereas GANs, whilst being able to gen-
erate realistic images, draw from a latent space that
has less structure and continuity [35]. It is likely that
the structure of the cosmic web is dependent on fac-
tors that are not as immediately present in the data
compared to dependent structure that is more obvious
natural image data. For this reason Generative Adver-
sarial Networks were chosen for this work. The VAE
model consists of encoding and decoding modules. An
object is encoded into the parameters of a statistical
distribution - thus assuming it is from a distribution.
A point is sampled from the latent distribution that
generates an input object. The decoding module maps
this point in the latent space back to the original input
object - this is the alleged reconstruction of a new ob-
ject from the original distribution. The equivalent to
the generator model in the VAE framework is the de-
coder. In training the VAE has two objective functions;
a reconstruction loss that ensures the decoded samples
match the initial inputs and a regularization loss that
reduces over-fitting to the training data samples.

4 Related work

Over the last few years research has accumulated on
the different applications of GANs to emulating data
samples. An example of GANs being able to provide
new data for further statistical insight is in the do-
main of particle physics. Here, GANs have been used
to generate particle beams [57], particle interaction-
showers [58] and 2D images of jets [59]. The DCGAN
architecture has consistently shown that it could gen-
eralise well in astrophysical applications. The ability
for GANs to transfer to new data and generalise to
different types of data has been founded by many pub-
lications with a variety of target data.
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Aside from the research into GANs for image based
tasks, less work exists that uses generative AI in as-
trophysics. One application of GANs to astrophysi-
cal data concerns subverting the point spread function
(PSF) that describes the effect of noise on the clarity
of images [30]. Typically the deconvolution of the sep-
arate noise and true light distributions are limited by
the Nyquist sampling effect. The findings indicate the
GAN approach successfully obtains artefacts within
images that have low signal-to-noise ratios. See [29]
for a similar example of research using GANs in gen-
erating astronomical images.

Rodriguez et al. 2018 [31] use GANs to generate
realistic 2D samples of N-body simulation mass distri-
butions of size 100 h−1 Mpc and 500 h−1 Mpc. This
paper is the closest to the work presented in this re-
port. N-body simulation data was obtained from the
particle distribution of the L-PICOLA simulation [60]
at z = 0. This simulation is based on the ΛCDM
cosmological model with the Hubble constant H0 =
70 km s−1 Mpc−1, dark energy density ΩΛ = 0.72 and
matter density Ωm = 0.28. The method of Rodriguez
et al. 2018 differs from this report in the statistical
tests of the generator output. The generated samples
are cross-correlated with each other in pairs to quantify
their mutual independence. This estimates the effect of
a weakness of GANs against other generative models,
known as mode collapse [43], where generated samples
can often be very similar if not identical. The gen-
erated 2D slices are compared to simulation samples
in a cosmological context by calculating the automatic
and cross (sample-to-sample) power spectrum of the
2D images using a discrete Fourier transform. The
power spectra Pk (see Appendix A) of the generated
samples against the training samples agree to 1-2% for
the majority of k values. This work shows the potential
for GAN methods to subvert N-body simulations.

Work by Mustafa et al. [32] uses a GAN to gen-
erate weak lensing convergence maps. The lensing
maps are generated from GADGET2 N-body simula-
tion code [61] that are then ray-traced using Inspec-
tor Gadget weak lensing simulation procedures [62–64]
to produce a collection of ray-traced lensing maps at
z = 1.0. The viability of replacing simulations with
generative models is discussed, with detail on the na-
ture of the separation between the model and data dis-
tributions after training. This is quantified by mea-
suring the statistical confidence in the null hypothesis;
the statement that the summary statistics in the gen-
erated maps and the validation maps originate from
the same distribution. The summary statistics are the
pixel intensities, the power spectrum of a map and a
non-Gaussian statistic pertaining to the nature of the
structure in a given map. The Kolmogorov-Smirnov
(KS) test for the pixel intensities of the generated maps
gives a p-value of pKS > 0.999 in comparison to the real
data. The generation of completely new maps that are
distinct from the training set is verified. The referenced

research shows the strengths of GANs in generalising
to new data and in emulating the distributions that are
native to different cosmological datasets.

5 Applications of an artificial
universe

5.1 Cosmological simulations

The Millennium Project simulation [65] and the succes-
sive Millennium-XXL [26] and Millennium-II [25] sim-
ulations made foundations for the comparison of obser-
vation to theory-based simulation. Research using the
simulations has provided new insight into high-redshift
quiescent galaxies [66], dark-matter haloes [67], weak
lensing [68], galaxy clustering [69] and the direct com-
parison of galaxy surveys with galaxy groups predicted
in the simulation volumes [70]. These applications in
the GAN-generated galaxy distributions depend on ex-
tending the depth of the method presented in this re-
port but they are strong motivations for the use of
GANs in simulating cosmological data. The direct
comparison of survey data and generated data is the
more likely once the objective of this work is completed.
The approach in this report can generate a similar vol-
ume to the Millennium simulation in around an hour
(GPU time) as opposed to three-hundred years (CPU
time) for the Millennium simulation.1.

5.2 Gravitational wave sources

Measurements of cosmological parameters from obser-
vations of gravitational wave events are independent of
the electromagnetic (EM) spectrum and any obstacles
to the transmission of EM radiation. Because these
measurements do not use EM radiation, they provide
alternative estimates that do not depend on cosmolog-
ical distance scale [71]. Information on dark energy
density at z > 0.1, past the edge of the local universe,
could be obtained to better constrain cosmological pa-
rameters. At this distance, the cosmological distance-
redshift relation depends on more than just H0 [72].
A further dependency is on the matter and dark en-
ergy densities Ωm and ΩΛ. The values of these pa-
rameters could be constrained by measurements of the
background rate of expansion from gravitational wave
(GW) events at non-local redshifts. Next generation
GW detectors such as Cosmic Explorer [73] and the
Einstein Telescope [74] as well as space based detec-
tors such as LISA [75] will be at the forefront of such
observations. There are also gravitational waves from
epochs in the early universe. These are known as relic
gravitational waves and they can be attributed to GWs
in the paradigm of quintessential inflation [76]. GW
astrophysics has potential in the future to open new
windows onto the conditions of the early universe.

1wwmpa.mpa-garching.mpg.de/galform/virgo/millennium
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Gravitational waves were first observed in 2015
with the detection of the binary black hole merger
GW150914 [77]. A separate GW observation was of the
binary neutron star merger event GW170817 [78] and
later the optical redshift measurement of its electro-
magnetic counterpart, the host galaxy NGC4993 [79,
80]. This event was used to constrain the value of
the Hubble constant H0. The value of H0 was found
to be H0 = 70+12

−8 km s−1 Mpc−1. This was the
first application of gravitational wave sirens in obtain-
ing cosmological parameters such as H0. A separate
analysis that improved on the X-ray and radio emis-
sion modelling from GW170817 [81] obtained a value
H0 = 74.0+11.5

−7.5 km s−1 Mpc−1. The consensus for the
true value of H0 from electromagnetic spectrum obser-
vations is a contentious issue. Assuming the ΛCDM
cosmology, the Planck experiment found a value of
H0 = 67.4± 0.5 km s−1 Mpc−1 [82].

The same event GW170817 had a degeneracy be-
tween the source distance and the viewing angle to the
radio counterpart that limited the initial certainty in
the EM localization of the GW source. This degen-
eracy was broken from radio interferometry [83] and a
value of H0 that disagrees with the previous values was
found to be 68.9+4.7

−4.6 km s−1 Mpc−1 [84]. A recent sur-
vey calibrates Type Ia supernovae (SNe Ia) against a
set of Tip of the Red Giant Branch (TRGB) stars [85].
These are bright stars that have just initiated helium
burning in their cores and H0 from this calibration was
found to be 69.8± 0.8 (±1.1% stat)± 1.7 (±2.4% sys).
The disagreement between the competing values of H0

could be decided using more measurements from GW
event observations and it is expected that accuracy
similar to the level of measurements by Planck is pos-
sible if between 106 and 107 gravitational wave events
are observed [86].

Gray et al. 2019 [87] consider GW observations
where the electromagnetic counterpart to the GW
source is unobservable so the distance to the electro-
magnetic counterpart is inferred as well as the GW
source distance. This may become the norm for future
searches into narrowing the uncertainties on cosmologi-
cal parameters. The paper describes Bayesian methods
used to obtain posteriors on H0 from GW events.

The process involves the creation of a series of mock
data challenges (MDCs). The MDCs are simulations
of GW events in mock galaxy catalogues. Between the
separate MDCs there are varying conditions of GW
and EM selection effects (GW selection effects corre-
spond to detector sensitivity and EM effects are due
to observed flux limitations). The effects of clustering
and large scale cosmological structure are ignored in
the simulation of co-moving volumes of uniformly dis-
tributed galaxies that the GW events occur in. These
mock catalogs show different comparisons to certain
properties of true galaxy distributions from surveys for
locating GW events, such as GLADE [88]. A larger
testing volume could be generated from a routine, such

as the one described in this report, with the summary
statistics that are similar to survey or simulation data
with added realistic cosmological structure. The EM
information from outside the volume specified in the
catalogs could not be replaced by the GAN method
shown in this report because at present it only returns
positional data. This could increase the understanding
of how current techniques for observed GW events per-
form so that tighter constraints on the source-observer
separation could be obtained in the future. This would
help to accumulate more data for posteriors to further
constrain H0.

Figure 5: A comparative diagram of Millennium simu-
lation data against galaxy survey data2.

In short, expanding the range for credible inferences
of GW event localizations with increased understand-
ing of GW event analyses would provide a more accu-
rate estimate on the value of H0 and other important
parameters. This will be important in the next runs of
LIGO [89]. The completed runs have already shown the
higher frequency of binary black holes found at larger
distances compared to binary neutron stars [90], where
current galaxy catalogs are incomplete. The true sub-
stitute of the incompleteness could be replaced by a
fast and realistic simulation from a conditional gener-
ative model that is given a redshift value. It should be
noted that there is no reason such a generative model
could not generalise to higher redshift simulation data
for this purpose. This is left to the discussion of fu-
ture work in Section 9. This idea shows the direct link
between generative AI and new discoveries in astro-
physics.

2Image from wwmpa.mpa-garching.mpg.de/millennium.
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6 Methods

6.1 Simulation data

Hydrodynamical simulations of particles with masses
on the order of a typical galaxy are the best way to
emulate cosmological phenomena for testing without
observational complications. Cosmological simulations
model the physics in the evolution of baryonic and
dark-matter in a self-consistent way that does not de-
pend on observations.

The Millennium Project Simulation was used to sam-
ple training data for the generative models. The Mil-
lennium simulation was published in 2005 by Springel
et al. [65] and remains active in research today. The
simulation was run using the GADGET2 code [61] and
it contains 21603 particles of mass 8.6× 108 h−1MSun

in a box of side length 512 h−1 Mpc. The cosmological
parameters of the Millennium simulation are based on
WMAP-1 data [91] and the 2dF Galaxy Redshift Sur-
vey [8]. These are Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045
and h = 0.73. Figure 5 shows a comparison of the
Millennium simulation to the large scale structure and
redshifts of the 2dF Galaxy Redshift Survey.

The galaxy catalogs containing physical properties
of galaxies in the Millennium simulation were derived
with the Semi-Analytic Galaxy Evolution (SAGE)
codebase by Croton et al. 2016 [92] that improves on
the earlier model of Croton et al. 2006 [93]. The SAGE
catalogs were sourced from the Theoretical Astrophys-
ical Observatory (TAO) [94]. SAGE modelling adds
baryonic processes into N-body simulations of halos af-
ter the simulations have been run. The baryonic par-
ticle properties are from information in the simulation
run such as mass, size, spin and their merger history.
SAGE models account for different mechanisms that
affect the evolutions of galaxies and therefore the evo-
lution of cosmological structure. The N-body particle
positions at a redshift z = 0 snapshot of the Millen-
nium simulation gave the positional training data for
the GAN.

6.2 Extraction of training data

Position vector components for the centres of cube
samples in the simulation volume were drawn from a
uniform distribution along each axis. If the addition
or subtraction of half the side length of the cube to
any of the components resulted in a point outside of
the simulation volume, the point was discarded. The
galaxy cube samples were obtained by sorting the po-
sition vectors of galaxies in the simulation that were
within the cube volume. Each point inside the cube
was recorded in an array. From the simulation volume
of 512 h−1 Mpc an ensemble of 128 array samples of
size 80 h−1 Mpc were selected. The galaxy positions
in each array for every cube were scaled to the range
[−1,+1]. 3D-histograms with 32 bins per axis were
made on each cube across the same range for each axis.

Figure 6: The application of the scaling s to a 3D-
histogram training sample. The cube on the left shows
an image x and on the right is a scaled image s(x).

The densities in each bin cell were also scaled to this
range to fit the output ranges of the GAN models. For
the 2D-samples, projections perpendicular to the xy-
plane were taken for each of the collected cubes. Here
a projection means ignoring the z-component of ev-
ery point in the 3D-sample to give a 2D-sample as if
one was facing the xy-plane and looking into the cube.
Two-dimensional histograms were made on these pro-
jections to create a collection of images with 32 bins
along each axis. After testing different sizes, a cube
size of 80 h−1 Mpc was found to balance the selection
of unique samples in the simulation volume against fea-
turing the same features in the simulation structure.

6.3 Initial data transformations
The 3D-histograms have pixel densities that span
across many orders of magnitude from voids to dense
clusters of galaxies. The origin of GANs from image
generation tasks has optimised them for the general
statistical structure of these images - the pixel den-
sities in natural images are typically more uniformly
distributed over the same scales. To help the GAN in
generating sparsely distributed densities a transform,
first utilised in [31], was used on the histograms to en-
hance the contrast between the density features. The
transform from the original histogram x to the scaled
histogram s(x) is

s(x) =
2x

x+ a
− 1 (6.1)

where a is a free parameter that depends on the spar-
sity of the histogram densities. The value of a = 10 was
found to be optimal for the 80 h−1 Mpc histograms.
This parameter remains fixed during training. The
value of a controls the median pixel density of the
scaled image. Figure 6 shows the difference between
scaled images s(x) and the original images x. This
transform was not necessary for the 2D-GAN imple-
mentation. The inverse transformation s−1(x) can be
applied to obtain the original image. A logarithmic
scaling was used originally, but this did not provide
good results with the GAN architecture that used the
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hyperbolic tangent (tanh) activation because the log-
arithm of a negative number is undefined. The mod-
els using tanh activations achieved much better results
than models without these activations.

6.4 Networks, architectures and train-
ing

6.4.1 2D-GAN implementation

Architecture — The networks follow the structuring of
the DCGAN models [51] and are written in Keras [95].
A full description of the layers in the 2D-GAN archi-
tecture is given in Table 1 of Appendix B. The gener-
ator transforms a 100-dimensional vector drawn from
a Gaussian prior z ∼ N (0, 1) into a 32 × 32 single-
channel image. The latent-space vector is followed by
a fully connected layer that is reshaped to a stack of
feature maps for the two convolutional layers. Batch-
normalisation is only used after the fully connected
layer. Through each layer hyperbolic tangent activa-
tions are used. See Appendices E.2 and E.3 for more
detail on batch-normalisation and activation functions.

The discriminator network has two convolutional
layers and two fully connected layers. The image sam-
ples have features extracted by the first two convolu-
tional layers and the features are flattened for the final
fully connected layers. Hyperbolic tangent functions
are used throughout the model and a sigmoid activa-
tion function (see Appendix E.2) is used for the final
single neuron layer that outputs the probability for a
given sample being real.

Both networks use the same number of filters for
the corresponding layers in either model. Together
the discriminator and generator models have 3.8× 107

trainable parameters. The discriminator and generator
objectives of Equations 3.2 and 3.4 are minimized
using the Adam optimiser [96]. Each model uses a
learning rate of 2 × 10−4 and momentum β1 = 0.5.
The models use a batch size of 64 histograms out of
a set of 128 training histograms, where the batch size
is the number of samples given to the discriminator
at each iteration of training. Refer to Table 2 of
Appendix B for a complete listing of the 2D-GAN
hyper-parameters used in each model. The hyper-
parameters of a model are set outside of training and
they shape how the training proceeds.

Training — GANs are notoriously difficult to train.
This means that the state of the models can gener-
ate realistic samples for a single epoch at a time. The
GAN was made to record the parameters of the gener-
ator model at these epochs by using a statistical check
(see Section 7) of the generated histograms against the
training data histograms in the training loop. The loss
(the objective function value) and accuracy values of
the discriminator for each epoch were recorded during
training.

An indicator for the performance of a GAN is the

classification accuracy of the discriminator model. This
metric is the average classification accuracy of the dis-
criminator on two separate batches of real and fake
samples. The accuracy metric for the generator is given
by the same accuracy subtracted from one. However,
in this case the accuracy is the discriminator’s accu-
racy in classifying a batch of fake cubes labelled as
real. This is because the generator is trying to make
the discriminator classify its products as real. The best
results were obtained when the losses of the networks
diverged and the accuracies of the networks slowly in-
creased and were at approximately the same value. A
training loop of 3.0 × 104 epochs for the 80 h−1 Mpc
cubes sectioned into 32× 32 pixel projections took ap-
proximately 2 hours on an NVIDIA Tesla V100 GPU
with 32GB capacity.

6.4.2 3D-GAN implementation

Architecture — Table 3 of Appendix B shows the
architectures of the 3D-GAN discriminator and gen-
erator models. The hyper-parameters used in the
3D-GAN are also given in Table 4 of Appendix B.
Together the discriminator and generator models had
around 2.5 × 108 trainable parameters across one
linear layer and three convolutional layers for the
generator model and three convolutional layers for the
discriminator model.

Training — The 3D-GAN implementation was limited
by the GPU memory capacity - the parameters and ar-
chitectures together with the sample batch sizes meant
that the GPU was easily saturated. Deeper models
with more convolutional units were implemented but
these tended to stall the GPU. A training loop for
8.0 × 104 epochs for the 80 h−1 Mpc cubes formatted
to 32 × 32 × 32 pixel histograms took approximately
72 hours on an NVIDIA Tesla V100 GPU with 32GB
capacity.

Generative adversarial networks are harder to train
with three-dimensional input data because of the in-
crease in the number of configurations of interest in
the data. There are a number of tricks and techniques
for moving toward more convergent and stable train-
ing. A compilation of these resulted from testing GANs
in natural image tasks. The techniques that were used
to train the 3D-GAN in this work were one-sided label
smoothing, historical averaging and a decaying noise
input which were borrowed from [97, 98]. The exact
implementations stem only from the original theoreti-
cal basis. One-sided label smoothing adds scalar values
sampled from a uniform distribution U(−0.1, 0) to the
real labels only. Historical averaging adds a penalty
LH to the objective functions of the discriminator and
generator. The addition is

LH =
∣∣∣∣∣∣θ − 1

t

t∑
i

θ[i]
∣∣∣∣∣∣2 (6.2)
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where θ and θ[i] are the model parameters at the
present and previous epochs respectively. This cost
term helps the networks move out of mode collapse.
The decaying noise input temporarily slows the dis-
criminator training by showing it less clear real sam-
ples. This in turn allows a strong discriminator model
that doesn’t overwhelm the generator early in training.
The decaying noise input samples noise at each epoch
to add to every histogram pixel in an ensemble of sam-
ples. The Gaussian noise n has standard deviation σi
that depends on epoch i such that

n ∼ N (0, σi), σi = Ae−γi (6.3)

where the free parameters A = 10−2 and γ = 10−3

were found to work well. These techniques were not
necessary in the 2D-GAN implementation. This is
likely due to the relative information content between
the 2D and 3D samples. Diluting the real and fake
batches of samples to 1% of the batch-size with the op-
posite validity of samples helped the training process
stabilise.

7 Statistics and diagnostics

7.1 Comparison of distributions with
Kullback-Leibler Divergences

Generative Adversarial Networks reduce the difference
of the model probability distribution between the gen-
erated samples pmodel and the probability distribution
of the training data samples pdata. This reduction
quantifies how well pmodel estimates pdata. An esti-
mate on the suitability of this replacement was made
using a comparison with different ensembles of sam-
ples. The ensembles were collected from the training,
generated and uniform distributions of histograms de-
noted t, g and u. The uniform distribution u was a set
of histograms with pixel densities drawn from a uni-
form distribution U(−1, 1). The comparison of sample
ensembles tested how well the generator made the dis-
criminator associate the real and generated samples to
the same distribution. The Kullback-Leibler (KL) di-
vergence and its relevance to the comparisons is defined
in Appendix C.

Figure 7: A histogram down-sampled with three ker-
nels of size k = {1, 2, 4} (from left to right).

Figure 8: From a single ensemble of 3D-histograms to
a normalised distribution; (a) - an ensemble of 3D-
histograms that will be transformed into a distribu-
tion, (b) - the flattened vector of bin-cells, (c) - the
histograms of each vector-component, (d) - the final
collapsed vector encoding the whole of a given distri-
bution of 3D-histograms.

7.1.1 Histogram distributions

After selecting the best epochs from training, distribu-
tions of training and generated samples were gathered
and the average relative entropy between the ensem-
bles was calculated to estimate how similar the gener-
ated and simulation samples were to each other. The
uniform distribution u was made to have samples to
compare with that did not have any correlated struc-
ture on any scale. The comparison of ensembles shows
the spread of the DKL value on samples from the orig-
inal distributions t, g and u and consequently how dif-
ferent random groups of samples are to each other. In
the case of the uniform-training and uniform-generated
comparisons it shows how similar the samples are to a
uniform distribution. The DKL values between draws
of samples from distributions a and b were calculated
for both DKL(a||b) and DKL(b||a).

7.1.2 Deriving the KL comparative diagnostic

There were 50 samples in the ensembles from the dis-
tributions t, g and u that contained 500 samples each.
Each histogram in the ensemble was down-sampled by
iterating a kernel of size k over each histogram and
summing the densities. The summed densities were di-
vided by the number of bins in the kernel after down-
sampling. This is equivalent to the initial histograms
having a lower sampling with larger bins. After an
ensemble is down-sampled, the ensembles of two dis-
tributions are compared. The samples are individu-
ally flattened to ‘histogram-vectors’ with (32/k)3 com-
ponents in the 3D case and (32/k)2 in the 2D case.
This is shown in Figure 7. One-dimensional histograms
with two bins were made for each component in the
histogram-vectors. The two bins represented ‘high’ and
‘low’ pixel densities and the boundary between them
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was the median of the training data pixel densities.
This is because using the median meant that it was
not assumed that the pixel density distributions were
symmetric. The histogram-vectors were then collapsed
over the ensemble and normalised to sum to one as a
probability distribution. The vector was then sampling
the probability density function of pixel density. This
process is illustrated in Figure 8.

The distributions were compared with all the possi-
ble pairings of the set the distributions {t, g, u}. The
relative entropy, that is equivalent here to the KL di-
vergence DKL, was calculated between the distribu-
tion ensembles. The process was repeated for 100
separate ensembles and with the final DKL values
logarithmically-scaled DKL histograms for each com-
parison were made. This process was repeated for each
kernel size k where k ∈ {1, 2, 4}. The comparisons were
the same for the 3D case and the 2D case.

8 Results

8.1 Generated images

8.1.1 2D-GAN images

The results from the separate implementations were
the generated images, the model loss and accuracy
curves, the training statistic curves and the ensemble
DKL trials. A collection of training and generated sam-
ples from the 2D-GAN implementation are shown in
Figure 9. The generated 2D-histograms are very simi-
lar in appearance to the training data histograms. This
is the main reason for the tests of statistical structure
in ensembles from either distribution. The 2D-GAN
images show most of the important features of struc-
ture such as filaments, voids and dense clusters.

8.1.2 3D-GAN images

A collection of 3D-histograms generated through the
3D-GAN implementation are shown in Figure 10. Two-
dimensional projections of these same samples are
shown in Figure 11. These projections can be com-
pared to the 2D-GAN generated images because they
are derived in the same way from the same data,
though the scaling s(x) is shown on the 3D projection
images.

The 3D images in Figure 10 show that the values of
the pixel densities in the generated histograms are sim-
ilar to the training data. This is the easiest characteris-
tic of the images to judge because examples of structure
in these images are sampled from the distribution of all
its different possible appearances. The larger scale fila-
ments and sheets in the generated cubes are not always
reproduced but they are not totally missing from the
histograms. Closer inspection in an interactive envi-
ronment shows realistic voids in the histograms.

The 2D-projections of the histograms show the same
agreement in the pixel densities between the training

and generated samples. The main difference is in the
‘blur’ effect on the generated projections. This could
be solved by changing the kernel size and initializa-
tion in the convolutional layers of the models. The
projections also show more clustering and some larger
filament structure relative to the 3D-histograms. The
smaller scale variation of the pixel density in the train-
ing data appears more random than the generated data
if one picks a line of twenty or so pixels in an image. It
could be beneficial for the GAN models to use a higher
pixel count in the training data so that less of the in-
formation that records a given feature is lost in fewer
pixels. The most important statistic of the generated
images to test is a cosmological characteristic of the
data such as the power spectrum Pk or the correlation
function ξ. This is left to the discussion of future work
in Section 9 for now.

8.2 Loss and DKL curves

8.2.1 2D-GAN implementation

Figure 12 shows the 2D-GAN objectives and accuracies
over a run of training. The behaviours of the models
over the training are apparent in these curves. The
sharp jump at the start over the first few 100 epochs
or so shows the initial learning for both models that
are new to their tasks. The jagged shape over next
1.5 × 104 epochs in the accuracy curve (as well as the
loss curve) is where the generator fools the discrimina-
tor with half of its generated samples. The discrimina-
tor, at the same time, is only able to correctly classify
half of its input of real and fake samples. There are
small fluctuations in the accuracies of either model as
the generator makes smaller adjustments relative to the
initial training, until just after 1.5×104 epochs. There
is a sharp jump in the losses of both models, that is
highest for the discriminator, which implies the gener-
ator attempted a new strategy for its objective. The
accuracies here both climb to 100% whilst the losses
decrease to a lower value. At this point the generator
cannot do any better. This does not mean an ideal
‘perfect’ generator has closed the distance between the
model and data distributions, but instead that the ar-
chitecture of the discriminator cannot extract any more
useful information (and is extracting less and less) to
the generator. The gradients for backpropagation have
vanished. This was seen in training. The generator suf-
fered from mode collapse and made much more similar
samples.

Figure 13 shows the KL divergences and
Kolmogorov-Smirnov (KS) p-values pKS for the
generated and training image comparisons over a run
of training. The KS statistic and its p-value are a
sensitive test between two distributions. The KS
statistic DKS and the p-value pKS are defined in
Appendix D. This test is useful in monitoring the
performance of the GAN, particularly near conver-
gence where the gradient adjustments to the models
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Figure 9: Training data histograms and GAN-generated histograms from the 2D-GAN implementation.

tend to dissipate, causing smaller changes to be made
to the samples. The KL divergences between the
training and generated distributions t and g, denoted
by DKL(t||g) and DKL(g||t), follow a path that is
related to the behaviour of the models shown in loss
and accuracy curve. The divergences both start at a
global maximum and tend to a final convergent value.
The values sharply drop at the same epoch in training
as the losses and accuracies do. The initial DKL

values of the comparison are with earlier generated
images that are devoid of structure. The final value,
with some intermediate values, corresponds to images
that are very similar to the training data, so the DKL

values changed over a range of 10−1.0 to 10−2.5 from
structureless images to realistic images.

8.2.2 3D-GAN implementation

Figure 14 shows the 3D-GAN objectives and accura-
cies over a run of training. Both the accuracies and
the losses each have similar values for all epochs and
this is the behaviour of two well matched models. The
accuracies of both models converge at just over 60%
which implies there is space to improve the model ar-
chitectures. The separate networks are not able to fully
attain their objectives against each other. At this point
the discriminator is extracting the maximal amount of
information for use in classification and feedback to
the generator, which was observed to be changing the
histograms only at the scales given by its convolutional
kernels. In other words, the generator is fooling the dis-
criminator without generating the most realistic cubes
it could. Through running many different models it
was found that 8.0 × 104 epochs was enough time for
the network to converge. Past this point the training
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Figure 10: Training data histograms and GAN-generated histograms from the 3D-GAN implementation.

would dissipate chaotically.
Figure 15 shows the KL divergence DKL and KS

p-value pKS over a run of training. The curves have
similar features to the loss and accuracy curves as
they should because of the relation of the cross-entropy
to the KL divergence DKL. The initial decrease of
both DKL values shows the generator and discrimina-
tor learning and the spike at around 4.0 × 104 epochs
indicates the generator changing its strategy. The same
decrease is seen with a return to similar values of DKL.
The KS p-value pKS shows a large change in value over
training, particularly when compared to the 2D-GAN
pKS curve. Even with the realistic samples of the 2D
implementation the null hypothesis that either ensem-
bles of samples originated from the same distribution
was always rejected at any point in training. All the
pKS values indicated rejection of the null hypothesis
at 10% alpha (the significance level of the test, see
Appendix D) because the pKS values always fell be-
low the 20% threshold. The small differences between

the observed DKL(t||g) and DKL(g||t) values with re-
spect to the values throughout training is important.
This suggests that the training and generated distri-
butions t and g are suited for replacement with each
other, as opposed to a preferred replacement of one
with the other. The fluctuations are larger in the 2D
case. Further work is required to comment upon the
relative values of the convergent DKL pairs in either
implementation. The 3DDKL values changed from the
comparisons with initial noisy images against training
data from 100.0 to 10−1.6 with the final realistic his-
tograms.

8.3 KL trials

8.3.1 2D-GAN implementation

Figure 16 shows the results of the DKL tests for the
2D-GAN implementation with the DKL values on each
plot of the distribution comparisons. There is a consis-
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Figure 11: Two-dimensional projections of the 3D-GAN generated histograms.

tent broadening of the histograms along the columns of
increasing kernel size. This shows the random effect, or
dispersion, on the DKL value from repeated tests to on
separate ensembles of histograms. This is caused by the
loss of information due to the down-sampling of larger
areas which causes more variance in a given value of
pixel density because of the averaging over the original
pixels. This is predicted by the central-limit theorem.
In this discussion a ‘mutual comparison’ refers to the
KL divergence DKL between two different ensembles
from the same distribution of t, g or u. The mutual
DKL comparisons that show the broadening the most
are the generated-generated and uniform-uniform com-
parisons which together have increasing variance and
separation with kernel size. This shows that in both
cases the distributions are composed very differently to
the uniform distributions. The means of the mutual
distributions stay the same except for the uniform-
uniform comparison. This is because the median for

the bin separations in the component-histograms was
given by the median of the training data which has a
lower mean pixel density than the uniform histogram
data.

The separate kernels cause averaging over different
sized areas in the 2D case (volumes in the 3D case). By
construction the histograms are already sampling a vol-
ume at a fixed resolution for every distribution and so
the kernel sizes give the same volume at different levels
of resolution. A histogram from any distribution with
each kernel down-sampling will exhibit different scales
of structure from the original unsampled histogram and
this is shown in Figure 7. The ensembles drawn from
each distribution are necessary to measure the differ-
ence in the structure from the distributions that is not
inherent in the individual variance of the images them-
selves. The latter difference does not concern the dis-
tributions of the samples and is less important for the
test of the generator capability.
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Figure 12: The loss and accuracies curve for the train-
ing of the 2D-GAN implementation.

Figure 13: The training against generated KL-
divergences and KS p-value curves for the training in
the 2D-GAN implementation.

The widths of the mutual comparison histograms in
the 2D and 3D DKL trials show that there is an inher-
ent difference in the information content of the ensem-
bles from distributions in the 2D and 3D distributions.
This comes from the differences between the samples
themselves and with the fixed specifications of the his-
tograms it would be expected that the mutual com-
parisons show very close values. An important char-
acteristic of the training-generated comparisons is that
theDKL-histograms of these distribution pairs overlap.
This gives evidence that the distributions can represent
each other. The mean DKL(t||g) and DKL(g||t) val-
ues are all nearly a whole order of magnitude smaller
than the training-uniform and generated-uniform com-
parison means. These values of the training-uniform
and generated-uniform together show that the genera-
tor representations are close to the training data be-
cause of their similarity in the mean, variance and
mean-separations for all values of k. This shows the

generator is able to create samples that are strongly
correlated to the training data samples.

8.3.2 3D-GAN implementation

The main difference between the 2D and 3D images
is in the total information content due to the num-
ber of pixels in the 2D and 3D samples. This was
a difficult task for the models in the 3D-GAN and the
corresponding DKL tests show this. Because of the dif-
ferences in the total information content a direct com-
parison between the 2D and 3D DKL trials cannot be
made. Given a 2D-GAN and a 3D-GAN both creating
realistic samples, it would be expected that the aver-
age DKL trials would centre around lower means for
the 2D implementation. This is the opposite to what
is shown even though the changes in the DKL(t||g)
and DKL(g||t) values over training shown in Figures 13
and 15 decrease by the nearly the same amount but for
lower starting values in the 2D case.

Figure 14: The loss and accuracies curve for the train-
ing in the 3D-GAN implementation.

Figure 15: The loss and accuracies curve for the train-
ing in the 3D-GAN implementation.
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The DKL values of the training-generated compar-
isons are lower by nearly a whole order of magnitude
than the training-uniform and generated-uniform com-
parisons for all kernel sizes. This is the most important
result of this report because it is evidence for the gen-
erator being able to generate samples that are statisti-
cally similar to the training data samples in the 3D con-
figuration. These values show that much less informa-
tion would be lost if the model distribution was used in
place of the data distribution as opposed to the uniform
distribution, the amount lost is around a factor of two
more than that of the training distribution approximat-
ing itself with different ensembles. This is supported
by the horizontal separations of the histogram peaks in
each column of the top three rows of Figure 17. The
values of the DKL(t||g) and DKL(g||t) are nearly the
same as the DKL(t1||t2) and DKL(t2||t1) values which
suggests that replacing the 3D pdata distribution with
the 3D pmodel distribution would provide realistic sam-
ples for the same potential uses of the training data.
This is because the DKL(t1||t2) and DKL(t2||t1) values
are nearly the same as the DKL(t||g) and DKL(g||t)
values as well as the fact that they are both smaller
than the uniform-generated and uniform-training com-
parisons.

The mutual DKL comparisons of the training and
generated samples show agreement across the different
kernels except for a difference of 10−3 in the variance of
the k = 4 comparison. This shows the generators abil-
ity to reproduce a variety of structure in the training
data samples. The higher DKL average in the k = 1
training-generated comparisons are expected; the DKL

statistic has more individual pieces of information to
compare and find differences with.

The k = 4 kernel, whilst being the largest kernel,
does not completely measure the continuity of filament
structures over a number of the pixels in the k = 4
down-sampled histograms. This could be tested of a
few larger kernels in histograms with a greater number
of total pixels. This could also be measured using a cos-
mological test such as the two-point correlation func-
tion or power spectrum. An increase in the number of
bins for the component-histograms would measure the
similarity of the generator images to the training data
images better. The values of the standard deviation of
eachDKL histogram relative to the values of the means
suggests the number of trials sufficiently sampled the
true DKL mean in each test. The empty plot of Fig-
ure 17 appears this way, as in the 2D case, because
the density bin boundary is lower than the median and
mean of the uniform distribution over the pixel densi-
ties. The DKL value for this comparison is much lower
than 10−2.

The differences between the training-uniform and
generated-uniform means and variances are similar to
the same values in the 2D-comparisons. These values
show the significance of the training-generated compar-
isons in the top row of Figure 17, which are a nearly

Figure 16: The logarithmic histograms for the KL-
trials between the 2D image distributions. Each col-
umn holds histograms from a kernel size k = {1, 2, 4}.

a whole order of magnitude smaller. The mean DKL

values of these comparisons are almost at the value of
the training-training comparison means which is more
evidence for the understandings of the training data by
the generator. The similarity shown by the DKL(t||g)
and DKL(g||t) values may mostly be due to the similar
pixel density distributions of the training and gener-
ated data. Considering that the lack of filament struc-
ture in the larger scales of the generated data com-
pared to the training data is not shown in the DKL

comparisons, this may be true. The pixel density dis-
tribution is an important characteristic of the images
but the just obtaining the similarity between the t and
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g distrubitions with this property would not guarantee
that all the structure in the training data was present.
There are many combinations of pixels that make up a
matching pixel-density distribution for two histogram
distributions, but far less of those show the structure
of the cosmic web. The higher standard deviations in
the DKL histograms for the 2D case in all the kernel
sizes compared to the 3D cases is due to the larger size
of features relative to total size of the image that shows
them in either case.

Figure 17: The logarithmic histograms for the KL-
trials between the 3D image distributions. Each col-
umn holds histograms from a kernel size k = {1, 2, 4}.

9 Future work

At this outset the capability to generate independent
3D galaxy distributions is the beginning of the full ap-
plication of generative modelling in teaching a machine
to generate an artificial universe. The proceeding sec-
tions will show potential research into achieving the
full objective.

9.1 Improvements to the present
method

The strongest dependence of the quality and realism of
the generator product are the GAN models and hyper-
parameters. It should be noted that each of these
should really be tested independently but it is quite
possible that a lifetime is not long enough to do so. The
author’s opinion is that the best route is to improve the
current architecture by increasing the number of pixels
in the cubes, allowing the depth of the models to in-
crease with more layers, whilst also better translating
the variance in the structure inside the histograms. It
has been found that in amplifying the initial parame-
terised units in the first layer of the generator model
requires that there are at least ∼ 104 units in the 3D
case. The use of fewer units does not allow the gener-
ator to draw enough permutations from the potentials
‘proto-cubes’ allowed by the initial layer. The kernels
in the convolutional layers were found to be most effec-
tive at size 5×5×5 in the 3D case and the equivalent for
the 2D case. Though it is expected that some combi-
nation of higher kernel sizes would better characterise
the histogram structures.

A larger original simulation with which to sample
training data would help the networks process differ-
ences between individual samples. The larger volume
would give more homogeneous samples with less vari-
ance in the summary statistics per sample. The means,
total densities and variances of the pixel distributions
in each cube were calculated in each iteration of train-
ing. Monitoring these statistics showed that the their
variance was up to 10% of their total values each.
Increasing the homogeneity of the samples would de-
crease this value. The sizes of the samples relative to
the original simulation volume could also be increased
from the tested value to increase the homogeneity of
the samples. Increasing the sample cube size would
also allow the DKL testing to consider more varied
structure in the kernel sizes.

The DKL trials could be repeated to compare the
3D two-dimensional cube projections with the 2D gen-
erated images and training data. This would connect
the results of the separate 2D and 3D implementations.
For both of the implementations the pKS testing could
have been repeated in the same way as the DKL tests
to give more understanding of the differences between
the distributions. In this work the pKS-values would
be better understood if they were compared to other
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distribution comparison pKS-values.
The other available galaxy properties from the

Millennium-SAGE catalogs could also be folded into
the generator analysis to create distributions weighted
by luminosity or another characteristic.

9.2 Conditional Generative Adversar-
ial Networks

The ability to generate different classes of an object
does not require separate and independent GANs. The
GAN framework may be supplemented by an auxiliary
classifier that is attached to the discriminator model,
that still classifies the samples as real and fake, whilst
additionally characterising the type of the object. This
augmented GAN was derived by Odena et al. 2017 [99]
and is referred to as an Auxiliary Classifier Genera-
tive Adversarial Network (ACGAN). The application
to an artificial universe is that the different redshift
data available from N-body simulations could be given
to an ACGAN. Once this model was trained and had
achieved convergence the generator component could
create samples at different redshifts. These samples
could be tessellated together to form a larger distri-
bution across redshifts. This could follow the environ-
ment envisioned by the Millennium Run Observatory
(MRObs) [100]. This work sets out to bring together
the comparisons of observations and simulations on the
same plane of comparison - the perspective of the ob-
server. Figure 18 shows a schematic of how the smaller-
scale distributions could be pieced together along the
line-of-sight of the observer.

9.3 Redshift and structure interpola-
tion

The latent space from which the generator model sam-
ples noise-vectors to change into samples from the
model distribution encodes informative features in the
natural data samples. This latent space can be navi-
gated, typically along the separate axes, to interpolate
through the features. This could be implemented in
the latent space of an ACGAN that is trained on data
with different redshifts to interpolate between different
values of redshift in an inexpensive procedure. This in-
terpolation may hold the ability to evolve a collection of
samples simultaneously by interpolating through red-
shift values in a continuous way. The problem of mode
collapse for the generator model could be estimated by
interpolating the latent space to create a sample of im-
ages to test with each other for similarity. A simple test
would be to create the mean-image of this sample to
test for overlaps but more advanced cross-correlations
could show more detail of the overlaps.

9.4 Universe generation
To create a cosmological volume on order of the size of
the Millennium-SAGE volume, with the tested default

cube-size, a generator would need to create around 102

cubes. The generator model in this work once trained
can do so within 30 seconds. Whilst in the process of
fusing the samples together coherently avoiding density
discontinuities would not be a trivial task. It is logi-
cal to assume that it is a process that is maximally as
intensive as generating the cubes themselves. It is ex-
pected that the GAN would be able to generalise well
to higher resolution or larger volume sample data.

The scaled volumes produced by the GAN require
the value of the total number of galaxies contained in
the cubes to transform the cubes back into coordinate
tensors. This would be done by uniformly distribut-
ing the number of galaxy positions required for each
histogram cell into each cell. The value of the total
number of galaxies can be passed to the GAN frame-
work and detached to a separate ‘route’ in the models.
This value, like the histogram cells, would be correctly
posited just as the histograms are in training.

9.5 Generative variants

Some of the other possible architectures and variants
of the GAN framework could be implemented to see
if there was a efficient or more successful model for
the objective in this report. A Wasserstein Generative
Adversarial Network (WGAN) [44] was tested but it
was not found to work as well as the original GAN.
The Wasserstein loss function cannot be extended to a
categorical version for use in a conditional GAN so if
different redshift samples are required for an applica-
tion the WGAN method would not work anyway.

9.6 Parallelised GANs

One of the problems of training GANs is being sure
that the most profitable convergence, best performing
architectures and greatest accuracies are obtained. If
further work is able to prove that the use of gener-
ative models can mimic cosmological structure with
enough variety and realism, then the High Perfor-
mance Computing (HPC) resources used for simula-
tions could be used for creating even larger and more
detailed cosmological simulations. The concept has
been shown to work for smaller datasets and gener-
ative models in [101, 102]. This is particularly impor-
tant for the case of cosmological simulations because
previous simulations involve using assumptions such as
the Zel’dovich Approximations [103] and complex nu-
merical codes [61, 104]. Deep learning models are not
limited to using low order representations for struc-
tural phenomena such as clustering [105]. The datasets
available to parallelised generative models can also be
far larger and with HPC resources they can use deeper
models to process structure at higher resolution.
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9.7 Simulation transfer

It is expected that the GAN could perform well on
another simulation. The simulations in this work orig-
inate from the same ΛCDM cosmology and the webbed
structure is consistent. An informative transfer would
be to a future simulation operating at a higher resolu-
tion with a greater number of total simulation parti-
cles such as the Millennium-XXL simulation [26]. The
Millennium-XXL simulation uses 67203 particles in a
volume of 3000h−1 Mpc. Assuming a larger set of sam-
ples from this simulation, the GAN would be recreating
the distributions of smaller scale cosmological structure
that could be tested further. From the experience of
obtaining the strongest model in the 3D-GAN imple-
mentations, increasing the number of pixels increased
the performance of the models. This could be due to
a lower loss of information between an increase in the
number of pixels for a pixel in the previous resolution.
The apperance of the structure is better defined in this
way. The lower the number of pixels, the more ran-
domly distributed the pixel densities will be when they
average over similar features such as filaments. This is
the most difficult obstacle for the GAN as this prob-
lem is obviously much greater with the 3D samples.
The analog to this problem for images would be the
randomness of a set of pixelated images of flowers com-
pared to the same images but in higher resolution. The
structure is consistent between the samples in the lat-
ter distribution.

With the description above it would also be infor-
mative to test the GAN models on a far larger sim-
ulation volume with larger cube sizes. The structure
is better exemplified if the spectrum of density val-
ues is more continuous because larger samples tend to
less biased sampling. The improved sampling implies a
higher statistical significance of the separate examples
of structure in the training data. This is the product
of a much more advanced simulation. Different cosmo-
logical structure could be definitively shown, some of
which could have unexplored origins.

9.7.1 Power Spectrum

The power spectrum Pk is described in Appendix A.
This provides a new way of encoding the input simu-
lation data to GAN. It is possible that the GAN could
use a procedure outside of training to populate a vol-
ume with galaxies if it is given the power spectrum as
input data. The three-dimensional fast Fourier trans-
form that would need to be calculated for this task
could be done with the Nbodykit [106] in future work.

9.8 Statistical diagnostics

The next stage for confirming that the generated data
could take the place of the simulation data would be
to test the generated data as though it were natural
data once the model and data distributions were sim-

Figure 18: A diagram depicting the pencil beams of an
observer outward from their location; (a) - the pencil
beam and the required volumes (green) to span the
beam with unrepeated galaxy samples, (b) - the highest
efficiency for obtaining the volumes of a beam from a
distribution volume. From Overzier et al. 2012 [100].

ilar enough. At this point it would be possible for
the generated data to offer new insights. The cross-
correlations of individual images as well as the deriva-
tion of the power-spectra are two methods of further
testing the generated data.

An important task for this method is to estimate the
potential for replacing simulation data with generated
data. The generator is a fit to the simulation data and
sampling a fit does not generate statistically indepen-
dent samples. In the application of generating a large
volume of generated samples it is possible this would
not be an issue if the factor of the increase in the total
generated volume was not too large.

10 Conclusions

This work has demonstrated the potential of Gener-
ative Adversarial Networks in reproducing large-scale
cosmological structure with deep convolutional neu-
ral networks. The generator model can create real-
istic samples and this has been achieved in both imple-
mentations, but it is still early in terms of stating the
generative models as being perfect. In particular this
is due to the lack of consistent filament structures in
the 3D images. The 2D and 3D implementations have
been referenced to each other in rational comparisons,
with the generator showing it can imitate simulated
cosmological structure. This realism is not limited to
a single example, it is present across a large sample of
histograms tested over many ensembles from this dis-
tribution. This assertion is founded on the statistical
tests of Section 8.3 on generated data and simulation-
data samples. These tests show that rigorous statisti-
cal methods native to natural science are a potential
step forward in profiling the behaviour and function of
the generative adversarial framework and the field of
artificial intelligence at large.

Future work has been outlined that builds on the
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foundations of the reported work, moving towards gen-
erating an artificial universe at higher levels of statis-
tical agreement with both observation and simulation.
The methods of deep learning and generative adver-
sarial networks have been shown to be a valuable tool
to extend the expanses of N-body simulations and it
seems likely their power will be utilised in the next few
years of cosmology.
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Appendices

A The Power Spectrum Pk

The Cosmological Principle states that the Universe
is homogeneous and isotropic. The appearance of the
universe in the scales of the images in this report shows
that there are voids without luminous matter as well
as filaments and clusters of galaxies.

The evolution of the small fluctuations in the early
Universe into the webbed volumes of the present day is
called structure formation. The exact origins are not
well understood and the following argument assumes
small perturbations in the energy density of the early
universe which were amplified by gravity over cosmic
time. These density perturbations obey the wave equa-
tion (

∂2

∂t2
− c2s∇2

)
δn (A.1)

where c2s is the sound speed in the cosmological fluid
medium (which at this scale is a fluid regardless of its
material composition) and δn is the small change in
number density n caused by the perturbation. The
complex solutions to the wave equation are

δn = C(k) exp(i(ωt− k · x)) (A.2)

for complex amplitude C, where k is the co-moving
wave vector of the density perturbation in the cosmo-
logical fluid, x is the co-moving vector displacement of
the fluid and ω is the angular frequency of this oscil-
lation. A perturbation of this fluid can be described
as

n(x, t) = n̄(t)[1 + δ(x, t)] (A.3)

where n̄ is the spatially homogeneous number density
and δ(x, t) is the density contrast given by

δ =
δn

n̄
=
δρ

ρ̄
(A.4)

where ρ and ρ̄ are the mass density and its average
respectively. The transform to Fourier space is

δ(k, t) =

∫
d3x eik·x δ(x, t) (A.5)
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where δ(k) is the Fourier transform of δ(x). The
density perturbations in the early Universe can be
seen through the spatial distribution of galaxies in the
universe. The spatial average of the density contrast
〈δ(x, t)〉 is zero at any time t from the isotropy of the
universe. The correlation function ξ(|x − y|, t) is de-
fined as

ξ(|x− y|, t) = 〈δ(x, t), δ(y, t)〉 (A.6)

This function can be interpreted as the probability
of another galaxy at position y being a distance |x−y|
from a galaxy at x. ξ(|x−y|, t) depends only on |x−y|
since the universe is homogeneous and isotropic. The
scalar value of the separation gives the isotropic proba-
bility. The correlation function is a measure of the de-
gree of clustering in the spatial distribution of galaxies
compared to a random distribution of the galaxies.

Returning to the Fourier transform of the density
contrast δ(x, t), the correlation function in k-space is

〈δ(k, t), δ(k′, t)〉 = 8π3δ3
D(k + k′)

∫
d3r eik·r ξ(r, t)

(A.7)
where δ3

D is the three-dimensional Dirac-delta func-
tion and r = x− y. The definition of the power spec-
trum Pk is

Pk =

∫
d3r eik·r ξ(r, t) (A.8)

which shows the power spectrum is the three-
dimensional Fourier transform of the correlation func-
tion. This quantity in either a two or three-dimensional
space, with the density field fluctuations being drawn
from a Gaussian distribution, means that the power
spectrum gives a distribution of the fluctuations. The
power spectrum describes the amplitude of fluctuations
on different length scales or equivalently mass scales.

B GAN architectures and hyper-
parameters

The model architectures of the 2D- and 3D-GAN mod-
els are shown in Tables 1 and 3 respectively. The hyper-
parameters of the 2D- and 3D-GAN implementations
are shown in Tables 2 and 4 respectively.

C Kullback-Leibler Divergence

C.1 Information theory

Information theory aims to quantify how much infor-
mation is in a signal. The basic principle is that learn-
ing about an unlikely event is more informative than
learning about a likely event - the information con-
tent of the unlikely event is higher than the unlikely
event [39]. This means that learning about an event

Activation Output Shape
Generator

z (100)
Linear tanh (1024)
Linear tanh (16, 16, 128)
Conv2D tanh (16, 16, 64)
Conv2D tanh (32, 32, 1)

Discriminator
x (32, 32, 1)

Conv2D tanh (32, 32, 128)
Conv2D tanh (16, 16, 64)
Linear tanh (1024)
Linear sigmoid 1

Table 1: Architectures for the generator and discrimi-
nator networks in the 3D-GAN.

Hyper-parameter Value

Discriminator learning rate 2× 10−4

Discriminator dropout factor 0.5
Generator learning rate 2× 10−4

z dimension 100
Prior bounds [−1,+1]
Batch size / total samples 64 / 128

Table 2: Hyper-parameters used in 2D-GAN imple-
mentation.

Activation Output Shape
Generator

z (200)
Linear BatchNorm (16, 16, 16, 512)

Relu
Conv3D BatchNorm (16, 16, 16, 512)

(5× 5× 5) Relu
Conv3D BatchNorm (32, 32, 32, 256)

(5× 5× 5) Relu
Conv3D BatchNorm (32, 32, 32, 1)

(5× 5× 5) tanh

Discriminator
x (32, 32, 32, 1)

Conv3D BatchNorm (32, 32, 32, 1)
(5× 5× 5) LeakyRelu
Conv3D BatchNorm (16, 16, 16, 256)

(5× 5× 5) LeakyRelu
Conv3D BatchNorm (8, 8, 8, 512)

(5× 5× 5) LeakyRelu
Linear sigmoid 1

Table 3: Architectures for the generator and discrimi-
nator networks in the 3D-GAN.

that consists of two unlikely events contains more infor-
mation content than learning of one of the two events
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Hyper-parameter Value

Discriminator learning rate 2× 10−6

Discriminator dropout factor 0.3
Generator learning rate 2× 10−6

z dimension 200
Prior bounds [−1,+1]
Batch size / total samples 64 / 128

Table 4: Hyper-parameters used in 3D-GAN imple-
mentation.

alone. The quantity of information content is expressed
by definition of the self-information of an event x = x
as

I(x) = − logP (x) (C.1)

where the units of the self-information are depend on
the base of the logarithm this equation. The same
definition of information for continuous events x applies
as for the discrete events.

Self-information is associated with outcomes from
singular events. The amount of uncertainty in a
probability distribution is given by the Shannon en-
tropy [107]

H(x) = Ex∼P [I(x)] = −Ex∼P [logP (x)] (C.2)

this definition shows that the Shannon entropy is the
expectation value of the amount of information in an
event drawn from that distribution. When x is con-
tinuous the Shannon entropy is called the differential
entropy.

C.2 The Kullback-Leibler Divergence
A measure for the difference in the information content
of two probability distributions P (x) and Q(x) over
the same random variable x is given by the Kullback-
Leibler (KL) divergence

DKL(P ||Q) = Ex∼P

[
log

P (x)

Q(x)

]
= Ex∼P [logP (x)− logQ(x)](C.3)

The KL divergence is clearly only positive and only
equal to zero if the distributions are exactly the same.
For continuous variables the zero value for the case of
two identical distributions is for ‘almost everywhere’ -
the relation holds everywhere in space except on a set
of measure zero. The KL divergence is not a symmetric
quantity; DKL(P ||Q) 6= DKL(Q||P ).

C.3 Cross-entropy
The sum of the KL divergence for P and Q with the
Shannon entropy of P gives the cross-entropy H(P,Q)
of P and Q as

H(P,Q) = H(P ) +DKL(P ||Q)

= −Ex∼P logQ(x) (C.4)

Note that minimizing the cross-entropy with respect
to Q is equivalent to minimizing the KL divergence
because the differential entropy of P is independent of
Q [39].

The objective function J (D) defined in Section 3
means the discriminator tries to maximize the prob-
ability of correctly classifying real and fake samples.
This is the same as maximizing two separate cross-
entropies. The first is the cross-entropy of the discrim-
inator classifying the real samples from the data distri-
bution pdata as real. The second is the cross-entropy of
the discriminator of classifying the fake samples from
the generator distribution pmodel as fake.

D Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test can show whether
a sample comes from a population with a specific dis-
tribution or not. It is based on the empirical distribu-
tion function (EDF) which is defined, forN magnitude-
ordered data points {xi}, as

EN =
n(i)

N
(D.1)

where n(i) is the number of points with values less
than xi. It has been assumed that {xi} are independent
and identically distributed; in other words, that the
samples {xi} are independent of each other and are all
drawn from the same probability distribution. With a
model cumulative distribution function (CDF) R(x) to
test the cumulative data distribution function against,
the KS test statistic DKS is

DKS = max |R(x)− S(x)| (D.2)

So DKS is the greatest difference between the model
CDF R(x) and the EDF of the data S(x). The model
CDF represents the distribution to test for the null hy-
pothesis. For this work this is the comparison of the
mean image of the data-generating distribution pdata
to the mean image of the generated data distribution
pmodel. The null hypothesis is the default statement on
the comparison that there is no significant correlation.
Figure 19 shows two data distributions and a model dis-
tribution with comparisons of the corresponding EDFs
and CDF.

The KS test p-value pKS is calculated during GAN
training. The p-value is defined as the probability of
obtaining test results at least as extreme as the results
actually observed during the test, assuming that the
null hypothesis is correct. This translates to quoting
the probability of obtaining the KS test statistic DKS

given that the distributions are not correlated. The
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Figure 19: An illustration of the KS statistic for two
data distributions f(x) and g(x) and one model distri-
bution h(x). The model cumulative distribution func-
tion (CDF) and data empricial distribution functions
(EDFs) are shown.

strength of the KS test is that no underlying popula-
tion distribution function is asserted before calculating
pKS . The pKS value is referenced against an α-value
that thresholds the value to reject the null hypothesis
with. For α = 0.01 and a sample size of 64 for each
of the compared ensembles in the training loop deter-
minations of pKS , this provides a p-value of 0.20. In
this work all the KS p-values were calculated using the
SciPy [108] stats.ks_2samp function.

E GAN components

E.1 Convolutional layers

The standard unit in the layers of neural networks is
the linear unit of general matrix multiplication. Con-
volutional neural networks (CNNs) pioneered by Le-
Cun [109] were the first design for methods that could
decode grid-like data such as images. The procedures

in CNNs use a linear convolution operation as op-
posed to the multiplications in linear units that are
also known as perceptrons. The convolution operation
between two functions f and g is defined as

h(x) = (f ∗ g)(x) =

∫
f(τ)g(x− τ)dτ (E.1)

where for an image the function f in the convolution
is known as the input, the function g is the kernel and
the output function h is the feature map. The grid
data means the convolution is discrete so that

h(x) = (f ∗ g)(x) =
∑

f(τ)g(x− τ) (E.2)

In machine learning the input is an array of data and
the kernel is an array of parameters that the learning
algorithm changes in training. In the 3D-GAN the con-
volution equation takes the form

S(i, j, k) = (I ∗K)(i, j, k)

=
∑
l,m,n

I(i+ l, j +m, k + n)K(l,m, n)

(E.3)

for the 3D case, where I and K are the image and
kernel grids and S is the feature map from the con-
volution. A similar equation holds for the 2D case.
The indices l, m and n are the kernel size in each di-
mension. Because convolutions are commutative, the
kernel in the discrete convolutions passes over the im-
age (the kernel and image have been commuted), these
features can be recorded in a network. Figure 20 shows
how a feature map is taken from an image.

Figure 20: A general 3D-convolution operation; (a) -
the image inputted to the convolutional layer with the
kernel at one position in the image, (b) - the kernel-
image convolution output at a position, (c) - the output
pixel from the operation and (d) - the feature map of
convolutions across the image.

E.2 Activation functions
The activation functions used in each layer of the mod-
els in the generator and discriminator are important
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for the performance of the GAN. Figure 21 shows the
activation functions used in the models, plotted on
x, y ∈ [−1,+1].

In the generator models rectified linear unit (ReLU)
activation functions were put at the end of the inner
layers with a hyperbolic tangent activation (tanh) acti-
vation at the end of the last layer. This final activation
helps the GAN match the pixel counts to the range of
the training data samples. LeakyReLU activations are
the same as ReLU functions for positive inputs but are
scaled by a value α for negative inputs. The value of
α = 0.2 was taken from [51]. On the end of the dis-
criminator network a sigmoid activation function was
used to match the range of probabilities P ∈ [0, 1].

Figure 21: The four types of activation function used
in the GAN models.

E.3 Batch-normalisation
The forward flow of information in a deep learning
model means the parameters of the previous layer influ-
ence the parameters of the next layer through changing
the inputs to the next layer. The gradients in opti-
misation are used to update the whole model simul-
taneously which can have unexpected effects because
the updates are calculated under the assumption that
the other layers are held constant. Ioffe and Szegedy
2015 [110] proposed a reparameterization to help apply
the updates across separate layers. Batch normalisa-
tion involves normalising data in the batches that it is
presented to a layer in [39]. For a batch of layer acti-
vations expressed as a matrix H, normalising requires
replacement of H by

H′ =
H− µ
σ

(E.4)

where µ is a vector containing the mean of each ac-
tivation and σ is a vector containing the standard de-
viation of each activation. Each row in H corresponds
to the activations of some layer for every example in

the batch. This means Equation E.4 applies σ and µ
to each row in H. The network operates on H′ just as
it did on H. In the training loop

µ =
1

m

∑
i

Hi

σ =

√
δ +

1

m

∑
i

(H− µ)2
i (E.5)

where δ is a constant. These equations give the same
parameters in Equation E.4 for a normalised and repa-
rameterized H.

E.3.1 Stochastic Gradient Descent

A gradient descent algorithm outlines the process of
minimizing an objective function for a model. The
function may be distributive over a set of samples so
that it is the same as the sum of the function acting
on each sample. Stochastic gradient descent (SGD) is
a common optimisation algorithm. It uses a constant
learning rate (a step to move through the parameter
space with) per iteration of training, though in prac-
tice this value depends on the value of the iteration for
more advanced algorithms.

In SGD a sample of m latent-space vectors
{z(1), . . . , z(m)} are drawn from pz with a sample of
m samples of real data {x(1), . . . ,x(m)}. The discrim-
inator parameters are updated the ascension of the
stochastic gradient

∇θ(D)

ε

m

m∑
i=1

[
logD(x(i))+log(1−D(G(z(i))))

]
(E.6)

and generator is updated by the descension of its
stochastic gradient

∇θ(G)

ε

m

m∑
i=1

log(1−D(G(z(i)))) (E.7)

where ε is the learning rate and ∇θ is the directional
derivative in the direction of increasing or decreasing
gradient.
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