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ABSTRACT

I investigate the processes at work in the cancellation of normal mag-

netic flux in solar magnetograms, and study the relationships between

cancellation and the budget of free energy in the coronal magnetic field

that can power solar flares and CMEs. I begin by defining cancellation,

and present the equations describing the evolution of free energy during

cancellation. I then analyze these equations, to show that: cancellation

tends to reduce the magnetic energy of the hypothetical “open” field state;

in a sheared arcade field, steady cancellation can add free energy to the

actual coronal field; and, considering relevant boundary conditions, the

horizontal magnetic flux density can increase while normal flux is can-

celling, even in the presence of constant resistivity. Finally, I discuss the

implications of these facts.

1. Introduction and Definitions

Observers who first saw magnetic flux cancellation in magnetograms of the solar pho-

tosphere offered an operational definition of the phenomenon, “the mutual apparent

loss of magnetic flux in closely-spaced features of opposite polarity” (Livi et al. 1985).

Physically, Zwaan (1987) offered three scenarios to explain this phenomenon in terms

of magnetic reconnection, illustrated schematically in Figure 1. The pictures vary

essentially only in the difference in altitude between the (idealized) layer in which

the magnetograph images the cancelling magnetic fluxes, and that at which the

reconnection between the converging magnetic flux systems occurs. Zwaan’s “re-

connective cancellation” scenarios are consistent with the observations of Harvey et

al. (1999) that, in the quiet sun, cancelling magnetogram features typically orig-

inate in distinct flux systems and coincide with coronal bright points. More re-

cently, observers have reported detailed signatures consistent with the magnetic re-

connection implied by this process, assuming it takes place above the magnetograph
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imaging layer; see, e.g. Chae (2003). Other observers attribute the disappearance

of vertical flux to the essentially ideal submergence of inverted-U-shaped field lines

(Chae et al. 2004; Harvey et al. 1999; Rabin et al. 1984) or emergence of U-shaped

field lines (van Driel-Gesztelyi et al. 2000). Harvey et al. (1999) argued that emerg-

ing U-shaped loops were far less common (if present at all) than submerging, inverted-

U loops in their sample of reconnective cancellations. It is likely that each of these

processes are at work on the Sun in some cases, either singly and in combination.

Martin (1998) considers cancellation a necessary condition for the formation of promi-

nences, which are extended coronal emission features, seen in chromospheric spectral

lines (e.g., H-α) when over the limb. When on the disk, these structures are visible as

absorption features and are known as filaments. The sudden eruption of prominences,

sometimes occurring over a few tens of coronal Alfvén crossing times, τcor, can lead to

coronal mass ejections, or CMEs (Forbes 2000), the primary drivers of severe space

weather disturbances (Gosling 1993).

An open question is how the coronal magnetic energy (from now on, “energy” refers

to magnetic energy, unless explicity stated otherwise), UM =
∫
V
dV (B·B)/8π, evolves

when flux cancels during prominence formation. In addition to affecting the energy in

the the actual magnetic field, B, cancellation also affects the energy of the potential

magnetic field, B(P ), that matches the normal field boundary condition on B, i.e.,

Bn|∂V = B
(P )
n |∂V , where ∂V is the surface that bounds V . The potential field is

current free, i.e., 4πJ(P ) = c(∇ × B(P )) = 0, implying B(P ) can be expressed as

the gradient of a scalar potential, B(P ) = −∇χ. The potential field is of interest

because it is the unique, minimum energy field that matches the same normal field

boundary condition as B. Since the photosphere remains essentially unchanged on

the rapid timescale of dynamic coronal field evolution (τp−sph À τcor), the energy

available to drive such evolution is the free magnetic energy, UF = UM −U (P )
M , where

U
(P )
M =

∫
V
dV (B(P ) ·B(P )).

The coronal field can effectively store free magnetic energy because its evolution is

constrained by its fixed topology: the corona’s long length scales, high temperature,

and low density mean that the field’s evolution is, normally, ideal, or nearly so;

equivalently, the magnetic Reynolds number is large. Consequently, while the coronal

plasma possesses sufficient degrees of freedom to always reside in a minimum accessible

energy state, the potential state is not always accessible. In the general case, B

cannot relax to B(P ), the global energy minimum among the set of all magnetic

fields that match the normal field boundary condition, Bn|∂V , but instead relaxes

to a local energy minimum. Given the dominance of the Lorentz force over other
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terms in the momentum equation that describes the coronal field’s evolution, the

accessible minimum state, consistent with the field’s topology, is presumably force-

free, (∇×B)×B = 0.

Even when the field’s topology changes rapidly, in a process known as fast magnetic

reconnection (perhaps due to the relatively brief occurrence of a spatially localized

enhancement of magnetic diffusivity, perhaps manifested as a flare or sub-flare), the

field is still unable to relax to the potential state, because the field’s magnetic helicity

(Berger and Field 1984) is approximately conserved (Berger 1984). (By definition,

fields that possess gauge-invariant magnetic helicity are not potential.) Instead, Tay-

lor (1985), has suggested that the field relaxes to a linear, “constant-α” force-free

state with approximately the same magnetic helicity as the field possessed prior to

the onset of reconnection. Antiochos et al. . (2002) have argued that localized nature

of reconnection in the solar case (in contrast to the global relaxation in the terres-

trial plasma experiments Taylor characterized), results in a variable-α (or non-linear)

force-free field. Regardless of whether α varies in space or is constant, the presence

of helicity in the post-reconnection field implies that the field is not potential.

It has been suggested (by, e.g., Low [2002] and others) that CMEs remove non-

potential, helicity-carrying flux systems from the low corona and into the heliosphere,

effectively ridding the erupting volume of magnetic helicity. This allows the magnetic

field in the erupting region to relax to its global energetic minimum, the poten-

tial state. So, while reconnection without eruption can release some fraction of the

corona’s free energy, eruption (perhaps with attendant reconnection) can release all

of the free energy.

Removing non-potential flux to infinity by ejection has an energetic cost, however,

and the coronal field will not spontaneously erupt unless the energetic gain in relaxing

to the potential state exceeds the energetic cost of ejecting the non-potential flux. Aly

(1984,1991) and Sturrock (1991) argued that sufficient energy to open the field — a

presumed requirement to eject a coronal flux system to infinity — cannot be stored

in the field by twisting or shearing motions acting on the solar photosphere alone,

assuming the field is force free and evolves ideally.

In a series of simulations, Linker, Amari, and their collaborators (Linker et al. 2001;

Amari et al. 2003), have argued that cancellation simultaneously lowers U
(O)
M , the

open field energy, while increasing UF . In these numerical experiments, shear is

applied to a model coronal arcade is sheared, followed by an imposed electric field on

the bottom boundary, which leads to cancellation at the boundary and the formation

of a flux rope. Given enough shear and cancellation, the flux rope erupts dynamically.
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This paper is an analytic investigation of the effect of cancellation upon the open

field energy and the free magnetic energy in sheared arcades. In Section 2., I define

terms and discuss assumptions regarding cancellation. In Section 3., I show that

cancellation tends to reduce the open field energy, and that cancellation in a sheared

arcade can increase the coronal free energy. In Section 4., I show that the effective

diffusion rate of horizontal field can differ substantially compared to the effective

diffusion rate of the cancelling normal magnetic field, which has implications for the

coronal field’s evolution in response to cancellation. In Section 5., I use a simple model

of a sheared arcade to illustrate these principles. Finally, in Section 6., I discuss the

implications of this work, and address the issue of boundary conditions in simulations

of cancellation.

1.1. Definitions of Cancellation

For this paper, which is not concerned directly with observations, I employ a more

mathematical definition of cancellation: it occurs when oppositely signed magnetic

fluxes threading a surface S, in the presence of plasma, come into contact and equal

amounts of oppositely signed flux “disappear” from S during a time interval ∆t.

I assume that S separates two volumes, V and Ṽ , with the plasma β (the ratio of

gas and magnetic pressures) low in the former and high in the latter. The magnetic

Reynolds number is assumed large in both V and Ṽ , meaning the field evolution is

nearly ideal. The normal field Bn is non-zero in at least one region of S, and might

or might not vanish on the rest of the bounding surface ∂V of V (which we often

assume to be open). While I will use V and corona interchangeably, and S (the

bottom boundary of V ) and chromosphere interchangeably, the analysis presented

here can be applied to flux cancellation in both other layers of the solar atmopshere

and other physical contexts.

In reality, S is an atmospheric layer of finite thickness δz (almost certainly not con-

stant in either space or time) over which the magnetogram field was derived from the

emission and absorption of radiation. My approximation of S as a plane means that

the magnetic field values I assume at S do not accurately represent the real field; I

really refer to the spatially-averaged field that a magnetogram shows.

Probably the most straightforward criterion for determining whether cancellation is

occuring is a global one: the total amount of unsigned flux through S decreases,

∂|Φ|
∂t

=
∂

∂t

∫
dS|Bn| < 0. (1)
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This integral constraint, however, is of limited utility in relating flux cancellation to

the coronal energy budget.

Locally, we know that cancellation of flux in S must occur along a polarity inversion

line (PIL), a zero contour of Bn. In the generic case (barring a special symmetry at

the PIL), one can adopt a local coordinate system at a point x0 on the PIL, such that

x̂ ‖ ∇Bn(x0), and ŷ ·∇Bn(x0) = 0. Essentially, x̂ points from the negative side of the

PIL toward the positive side, and ŷ points to the right along the PIL to an observer

standing on the positive side of the PIL, as illustrated in Figure 3. Generally, ∂Bn/∂y

vanishes in this system. In what follows, this will be the default coordinate system.

Focusing on how magnetic flux is transported to the PIL, I define the flux transport ve-

locity, which is equivalent to Démoulin and Berger’s (2003) (Démoulin and Berger 2003)

definition of the pattern velocity of magnetic flux at the photosphere,

u ≡ vh − vnBh/Bn. (2)

(The subscript h on vector quantities refers to horizontal, by which I mean more

precisely the component tangent to S.) For Démoulin and Berger, u is the horizontal

velocity at which magnetic features in a magnetogram of Bn appear to move when the

evolution is ideal; v is the actual plasma velocity. Non-ideal terms also transport flux;

their contribution is discussed further below. If the evolution is ideal, of tranport of

magnetic flux into an area dS is given by

∂ΦdS/∂t = −
∫
d(dS)∇h · (uBn) = −

∮

dS
d` n̂ · (uBn), (3)

which applies whether the velocity v is purely vertical, purely horizontal, or has

components in both directions. For example, this expression accurately captures the

flux transport into dS from a moving, tilted magnetic flux tube, whether the tube

is rising (or sinking), with vn 6= 0 and vh = 0, or moving laterally, with vn = 0 and

|vh| 6= 0. This flux transport velocity describes the evolution of Bn in sequences of

magnetograms that show cancellation whether reconnection, submergence, or emer-

gence are at work. Since the evolution of Bn does not fully constrain v, the actual

plasma flow, I assume that v is known. (Recall that the plasma β in Ṽ , below S, is

assumed high, so the magnetic field within V exerts a negligible force on the plasma

in Ṽ . Hence, the velocity at S is assumed to be kinematically imposed by flows in Ṽ ,

not dynamically determined by the state of the magnetic field in V .)

Fundamentally, the flux transport velocity perpendicular to the neutral line must be

converging toward the PIL for cancellation to occur. In the local frame, ∂ux/∂x < 0

at the PIL is a necessary condition for cancellation to occur. In the archetypal
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convergence case, ux = 0 at the PIL, which also makes it a velocity inversion line —

a “VIL” for the flux transport velocity perpendicular to the PIL. In the general case,

the flux at x0 is being transported with a velocity u0; a Galilean transformation to

the the comoving frame restores ux = 0 at the PIL.

A useful local criterion for flux cancellation is that

Bnux < 0 (4)

is satisfied on both sides of the PIL in the comoving frame. Since only flux tranport

perpendicular to the PIL instantaneously leads to flux cancellation, flux transport in

the ŷ direction (parallel to the PIL) does not contribute to cancellation (to first order

in ∆t), though it can affect the magnetic energy.

How does the plasma velocity v relate to the flux transport velocity u when cancel-

lation is occurring? If the normal velocity, vn, vanishes at the PIL, vx carries normal

flux toward the PIL, where it reconnects, as described elsewhere (e.g., Priest and

Forbes, 2002). If the evolution is ideal, then the vertical velocity must be non-zero at

the PIL, and the disappearance of vertical flux arises by submergence of inverted-U-

shaped field lines (Chae et al. 2004; Harvey et al. 1999; Rabin et al. 1984) or emer-

gence of U-shaped field lines (van Driel-Gesztelyi et al. 2000). Essentially, vertical

flux smoothly changes to horizontal flux, which is then advected away from S.

2. Cancellation & Field Energy

2.1. Open Field Energy

The open field state is one in which the field in the open subvolume of the corona is

current-free, except at separatrix surfaces between oppositely-directed flux systems.

(Here, open is not used in its usual mathematical sense; rather, the adjective open

describes flux systems in which field lines extend to infinity.)

Assuming the field in the entire solar corona is open, the field can easily be computed

from the normal flux distribution Bn on S: Bn is replaced with B̃n = |Bn|; the

open scalar potential χ(O) is then derived from B̃n; finally, the directions of field lines

originating in regions where Bn < 0 are reversed. The energy present in such an open

configuration can then be easily calculated in terms of a surface integral of the scalar

potential of the open field, χ(O), on the boundary,

U
(O)
M = (1/8π)

∫
dV B(O) ·B(O) = (1/8π)

∫
dV (∇χ(O) · ∇χ(O))



– 7 –

= (1/8π)

∫
d(∂V )χ(O) (n̂ · ∇χ(O))− (1/8π)

∫
dV (χ(O)∇2χ(O))

= (1/8π)

∫
d(∂V )χ(O) (∂χ(O)/∂n) =

1

8π

∂

∂n

∫
d(∂V )

(χ(O))2

2
. (5)

In a spherical harmonic expansion of χ(O),

χ(0)(r, θ, φ) = R¯
∑

lm

R
(`+1)
¯

r(`+1)(`+ 1)

(∫
dΩ′B̃n(θ′, φ′)Y ∗`m(θ′, φ′)

)
Y`m(θ, φ) (6)

the leading order term is proportional to the integrated absolute flux (the monopole

moment). The integral definition of cancellation in equation (1) ensures that this

term diminishes as flux cancels, so the leading-order change in energy is

∆E
(0)
0 = 2(∆Φ)2/R¯, (7)

where ∆Φ is the amount of flux that cancelled in one polarity. While convergence of

oppositely signed fluxes, a necessary precursor to cancellation, lowers the potential

energy (by analogy with electrostatics), it raises the open field energy, causing higher

order terms in the expansion above to be enhanced (though their amplitude decreases

as [` + 1]−1). When the converging fluxes have cancelled completely, however, the

enhancement to the higher order terms disappears. Nonetheless, I can only say that

cancellation tends to lower the open field energy. Observationally, Chae et al. (2001)

report a loss of 1.5× 1021 Mx over three days due to cancellation in AR 8668, which

corresponds to a leading-order change in the open field of ∼ 6×1031 erg, on the order

of energy changes associated with flares and CMEs.

The energy of an entirely open corona is, however, usually irrelevant; rather, the en-

ergy present when a particular subdomain of the corona is open interests us more. The

relative change in the open field energies before and after cancellation, ∆U (O)/U
(O)
M ,

can be larger when considering a subvolume of the corona. Calculating this energy,

however, requires solving a boundary value problem where the boundaries (the sep-

aratrices between the volume that would open and the regions that would remain

closed) are free surfaces, and is, in general, analytically intractable. Nonetheless, the

leading-order change in open field energy from cancellation will still be proportional

to the square of the cancelled flux.

2.2. Poynting Flux

Rather than calculate the field evolution in V in response to boundary evolution that

consistent with one of the cancellation scenarios above, I will calculate the Poynt-



– 8 –

ing flux on the boundary, to determine, where possible, changes in the field energy.

Assuming the electric field E can be written

E = −(v ×B)/c+ η(∇×B)/c, (8)

where η = c2/4πσ is constant, then the normal Poynting flux Sn of energy into V

across S can be written

Sn =
c

4π
n̂ · (−(v ×B)/c+ η(∇×B)/c)×B, (9)

where I have only kept the resistive term in Ohm’s Law. If the field is force-free,

or the diffusivity is small enough, then the η term can be ignored. Given that some

cancellation is reconnective, however, I keep it, but express it interms of J,

4πSn = vn(Bh ·Bh)−Bn(vh ·Bh) + (c/σ)(Jh ×Bh). (10)

For Sn < 0, the magnetic energy in V decreases.

Since, as discussed above, only flux tranport perpendicular to the PIL leads to flux

cancellation, flows in the ŷ direction (parallel to the PIL) do not instantaneously

contribute to cancellation, though they may contribute to the total Poynting flux.

As an aside, I note that Bn is zero at the PIL, so the magnetic field near the PIL

must be expanded in a Taylor series in the coordinate perpendicular to the PIL,

Bn ∼ δx · ∇Bn, (11)

to get the Poynting flux density near the PIL. The areal integral over Sn in the

cancelling region will, in general, be nonzero.

2.3. Potential Field Energy

The change in magnetic energy of the potential field cannot be calculated using the

Poynting flux, since physical equations (e.g., the induction equation) do not govern

the evolution between the initial and final potential fields, B
(P )
i and B

(P )
f , in V : the

former matches one boundary condition, the latter matches another, but the fields

in V do not necessarily evolve continuously. It is still the case, however, that the

induction equation, using the actual tangential magnetic field and the actual plasma

flow, governs the field’s evolution on the boundary. Fortunately, this is all we need

to recover the leading-order change in energy in the potential field.
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One can express B
(P )
f as B

(P )
i plus a change in the field, δB, where

∇× δB = 0 =⇒ δB = −∇χδ (12)

∇ · δB = 0 =⇒ ∇2χδ = 0 , (13)

since B
(P )
i and B

(P )
f are both divergence-free and potential. For small changes in the

field δB, the change in in potential field energy is then, to leading order,

δU (P )
m =

1

8π

∫
dV (B

(P )
f )2 − (B

(P )
i )2 (14)

' 1

4π

∫
dV B

(P )
i · δB =

1

4π

∫
dV (∇χi · ∇χδ) (15)

=
1

4π

∫
d(∂V )χi

∂χδ
∂n
− 1

4π

∫
dV (χi∇2χδ)

=
1

4π

∫
dS χi

∂χδ
∂n

. (16)

In the final step, I kept only the surface term corresponding to the changes in magnetic

field on S, on the assumption that the changes in the magnetic field on the other

components of the bounding surface, ∂V , are negligible. Recognizing that ∂χδ/∂n =

δBn (this derivative is outward normal), with a time step δt, one can refer to the

finite difference approximation to the induction equation (with η constant, and the

actual Bh),
δBn

δt
= ∇h · (vnBh − vhBn)− (c/σ)(∇h × Jh) , (17)

to write

δU (P )
m =

δt

4π

∫
dS χi∇h · (vnBh − vhBn)− cδt

4πσ

∫
dS χi (∇h × Jh) (18)

δU
(P )
m

δt
= − 1

4π

∫
dS ∇hχi · (vnBh − vhBn) +

c

4πσ

∫
dS (∇hχi × Jh)

+
1

4π

∮

S
d` χin̂S · (vnBh − vhBn)− c

4πσ

∮

S
dˆ̀· (χiJh) (19)

δU
(P )
m

δt
=

1

4π

∫
dS B

(P )
h,i · (vnBh − vhBn)− c

4πσ

∫
dS (B

(P )
h,i × Jh) , (20)

where I have assumed that the field is sufficiently localized on S that we can neglect

the line integrals in the partial integrations on the boundaries of S. I can now express

the leading order change in the potential field’s magnetic energy as a Poynting-like

energy flux density that depends upon both the actual and potential horizontal fields,

4πS(P )
n = B

(P )
h,i · (vnBh − vhBn) + (c/σ)(J×B

(P )
h,i ) . (21)

I note that any additional term(s) from the generalized Ohm’s Law kept in equation

(10) would, via equation (17), appear in equation (21) with Bh → B
(P )
h,i .
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2.4. Free Energy

To determine the rate of change of free magnetic energy in the corona, I now examine

the difference between Sn and S
(P )
n ,

4π(Sn − S(P )
n ) = (vnBx −Bnvx)(Bx −B(P )

x ) + vnBy(By −B(P )
y )

− cJy(Bx −B(P )
x )/σ + cJx(By −B(P )

y )/σ , (22)

one term at a time. To make progress, I make the following assumptions about B

and B(P ),

B(P )
x < 0 (23)

|B(P )
y | ¿ |By| , (24)

which are appropriate for a sheared arcade.

I assume the criterion for flux cancellation, equation 4), is satisfied, so −Bnux =

(vnBx − vxBn) > 0 near the neutral line.

I next consider the sign of difference between the actual and potential horizontal fields

perpendicular to the PIL, (Bx − B(P )
x ). If field lines arch over the PIL, from Bn > 0

to Bn < 0 across the PIL, then Bx points in the conventional sense, and Bx < 0 in

the local frame. If, however, Bx points in the “inverse” direction, such that Bx > 0

at the PIL, then field lines are dipped over the PIL. Dipped field lines over the PIL

occur, e.g., at a bald patch in a potential field (Titov et al. 1993), or when the lowest

field line in a horizontal flux rope osculates S in a current-carrying configuration.

Figure 2 shows two simple configurations in which the sign of Bx varies, based upon

the field’s topology above the PIL. Ignoring potential field configurations with dipped

field lines over the PIL, I assume that field lines in B(P ) generally arch over the PIL

conventionally, consistent with equation (23).

If the actual field lines dip over the PIL, Bx > 0, as with a flux rope, and field lines of

B
(P )
x arch over the PIL, then the difference (Bx −B(P )

x ) in equation (22) is positive.

In a typical bipolar arcade, where both the actual and potential field lines arch over

the PIL in the conventional sense, both Bx < 0 and B
(p)
x < 0. In a sheared bipolar

arcade, the actual field has a component along the PIL, By 6= 0, while the potential

field is essentially perpendicular to the PIL, By ' 0. Klimchuk (1990) analyzed

such configurations and found that increasing shear — essentially, increasing |By|
— invariably increases the height at which field lines of B cross the PIL, a result

consistent with other models of such configurations. Since the potential state has
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minimal shear, this expansion of the arcade has the consequence that the average

flux density perpendicular to the PIL, Bx, decreases compared to the potential state,

so

|B(P )
x | > |Bx| (25)

usually obtains at the PIL.

As an aside, I note that the direction of Bx at S is poorly defined when the field near

the PIL exhibits an X-point topology, like the configurations shown in Figure 1, since

Bx ∼ 0 near the PIL in such cases. The preceding discussion suggests that this does

not matter when calculating the energy flux, since the potential field does have a well

defined direction, by assumption.

In any case, then, the (Bx − B
(P )
x ) term in equation (22) is positive, whether the

horizontal field perpendicular to the PIL points in the conventional or inverse sense,

and (Bx −B(P )
x )(vnBx − vxBn) > 0 for cancellation in both cases.

Equation (24) implies the second term in equation (22), vnBy(By − B
(P )
y ), has the

same sign as vn.

Finally, I consider the two non-ideal terms in equation (22). Since Jx and Jy involve

vertical derivatives of the magnetic field’s horizontal components, these two quanti-

ties are not currently available with most vector magnetogram observations, which

invert Stokes’ profiles over a single, relatively thin, atmospheric layer (but see Metcalf

[1995]). Nonetheless, I can make quantitative staments about the sign of these terms,

given various assumptions.

Since ∂Bz/∂x > 0 by assumption in the local coordinate system, I can assume Jy ∝
(∂Bx/∂z − ∂Bz/∂x) ≤ 0 obtains for typical sheared arcades. In the potential field,

∂B
(P )
x /∂z > 0 must be true to satisfy J

(P )
y = 0. In a sheared field, as discussed

above, the shear-driven expansion causes Bx across the PIL to decrease as the arcade

expands, meaning ∂Bx/∂z < ∂B
(P )
x /∂z. This last relation is also true when a flux

rope lies over the PIL. These arguments, combined with arguments presented above,

suggest −Jy(Bx −Bx(P )) > 0 is usually true.

Since ∂Bz/∂y = 0 by assumption in the local coordinate system, Jx ∝ −∂By/∂z

must be true. I assume that, as above, B
(P )
y ' 0, leaving Jx(By −B(P )

y ) ∝ −∂B2
y/∂z.

Martin (1998) (Martin 1998) has observed that cancellation usually occurs between

plage fields. Lites (2005), in observations of photospheric vector magnetograms, found

plage fields far from PILs are nearly vertical (implying ∂|Bh|/∂z > 0 must obtain

there), but that plage fields near PILs are typically horizontal. Hence, observations do

not directly constrain ∂B2
y/∂z at the photosphere in cancelling regions. Observations
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of prominence fields overlying PILs, however, show that ∂|Bh|/∂z < 0 (Rust 1967;

Kim et al. 1984). If this property of the coronal fields above PILs also applies at

photosphere, then Jx(By −B(P )
y ) < 0.

What is the total contribution from these two, oppositely signed non-ideal terms?

While it is far from clear that real solar fields are force-free at the photosphere

(Metcalf et al. 1995; Moon et al. 2002), progress can be made if I assume they tend

to be, since I am only interested in the relative signs of the current and field compo-

nents. Proceeding in this vein reduces both non-ideal terms in equation (22) to

−Jy(Bx −B(P )
x ) + Jx(By −B(P )

y ) = JyB
(P )
x )− JxB(P )

y ) ' JyB
(P )
x > 0 , (26)

where, as above, B
(P )
y ' 0, Jy < 0, and B

(P )
x < 0 were assumed.

In the following sections, I examine the import of the results derived in this section

when more specific assumptions are made about the velocity and magnetic fields.

3. Flux Transport Rates

An essential difference between ideal cancellation and reconnective cancellation is the

transport of flux, Φy, that threads the x− z plane (or runs parallel to the PIL) in the

local frame. With either ideal submergence of inverse-U field lines or ideal emergence

of U-shaped field lines, Φy is merely advected with the flow. With reconnective

cancellation, however, both diffusion and material flow transport Φy away from S.

Hence, while the transport of horizontal flux seems straightforward in the ideal cases,

horizontal flux transport in the reconnective case is not so clear. How does the rate

of diffusion of Φy compare with the rate of cancellation of normal flux, Φn? Does Φy

diffuse asymmetrically in the direction normal to S? How does By evolve above and

below S as the reconnection proceeds?

Assuming constant diffusivity, one can estimate the diffusion rate of Φy using knowl-

edge of the cancellation rate of Φn. I assume steady-state reconnective cancellation

from a purely horizontal flow at S, with a vertically-oriented current sheet of thick-

ness 2δx, vertical extent 2∆zP (on the order of the local pressure scale height), and

no variation in ŷ, after Litvinenko (1999). The rate of flux transport from the ideal

region is balanced by the diffusive loss terms,

0 =
∂Φn

∂t
L−1
y (27)

= Bnvx + η
∂Bn

∂x
+ η

∫
dx
∂2Bn

∂n2
. (28)
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Given the X-type field topology perpendicular to ŷ, the ∂2Bn/∂n
2 curvature term

essentially means that field lines slip through the plasma, away from the PIL, with an

effective diffusive velocity v
(D)
x that opposes the advective inflow, vx. Consequently,

neglecting this term results in an overestimate of the flux transported into the diffusion

region, resulting in an overestimate of the effective diffusivity. I want to put an

upper bound on the diffusion rate of Φy compared to Φn, so an error in this sense is

acceptable. Approximating ∂Bn/∂x ∼ Bn/δ implies

η ∼< |vx|δx , (29)

which can be used to estimate the diffusion rate of Φy,

∂Φ
(D)
y

∂t
' η

(
∂By

∂x
∆zP +

∂By

∂z
δx

)
(30)

∼< vxδx

(
∂By

∂x
∆zP +

∂By

∂z
δx

)
. (31)

Hence, the diffusive transport of Φy is governed by gradients in By across the diffusion

region, about which very little can be said in general. Observations often show By

takes on extremal values near the PIL, with no indication of reversal in By across the

PIL; hence, the (∂By/∂x)δx term can probably be neglected.

The (∂By/∂z)∆zp term is trickier. In many numerical simulations of magnetic fields

in the outer solar atmosphere, all components of the initial magnetic field decay

monotonically with increasing height (e.g., in potential and many constant-α force

free fields), implying ∂|By|/∂z < 0. On the Sun, |Bh| ∼ 0 below the chormospheric

merging layer over large regions of the surface, while |Bh| 6= 0 in the atmosphere

above this layer, implying ∂|By|/∂z > 0 in these regions. Observations by Lites

(2005), however, show that plage fields near PILs are often horizontal, meaning this

fact does not apply to cancelling fields. As above, extrapolating coronal magnetic

field observations showing ∂|Bh|/∂z > 0 down to the photosphere implies Φy could

diffuse downward in the presence of resistivity.

I note that assuming ∆zP is less than a pressure scale height implies that, while a

vertical pressure gradient exists at S, this gradient does not affect the flux transport.

Clearly, more work remains for both observers and theoreticians.

Though Φy is conserved during the reconnection, By is not: parallel flux advected

through the diffusion region is free to rotate to a different orientation in the relaxation

process. Here, the evolution of By is quite different above and below the reconnecting

region, since reconnected field lines above and below the X-point are anchored in
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very different locations, from the nature of the sheared arcade in which the fields are

reconnecting: footpoints of field lines below the cancellation site are closer together

in y than the foot points of field lines above the X-point. Hence, the lower field

lines make larger angles with the PIL than the higher field lines do. Hence, |By| can

increase above the reconnection site faster than By below it does, even if more flux

Φy diffuses downward than upward.

4. Hypothetical Evolution in Simple Arcade Model

The physical picture in this model is that, in response to the normal field evolution

due to the cancellation, B0 → B′0, the coronal field relaxes between cancellation

events, at which point another cancellation begins and the process is repeated.

The coronal field can either evolve ideally or via fast magnetic reconnection, both

of which preserve the magnetic helicity. The Taylor-Woltjer theorem implies that

the coronal field will relax to another constant-α state, with a different force-free

parameter (α −→ α′), but with the same helicity as the pre-cancellation field.

We can calculate the vector potential,

Ay = B0 sin(kx)e−`z/k (32)

Az = αB0 sin(kx)e−`z/k2 , (33)

so we can calculate the gauge-invariant magnetic helicity,

H =
παB2

0L

kzk3
x

. (34)

Cancellation in this model leads to a decrease in B0, hence an increase in α for

constant helicity. (Actually, a [non-linear force-free] Gold-Hoyle flux rope would be

better as a model than this example, but I’m still working on that.)

Hypothesis: the presence of a component of the field parallel to the PIL causes the

PIL to evolve differently in the actual and potential field cases, even if the velocity

field causing the evolution is identical.

5. Discussion

For vn = 0 and vx converging toward the PIL, as when a flux rope has been formed by

steady reconnective cancellation in a sheared arcade, (Linker et al. 2001; Amari et al. 2003),
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the ideal terms increase the coronal free energy.

For cancellation with vn > 0, the ideal terms also increase the coronal free energy,

just as one would expect for, e.g., an emerging flux rope (Rust and Kumar 1994). For

vn < 0, and vx = 0, the ideal terms decrease the coronal free energy, as one would

expect for a submerging flux rope. For vx 6= 0 and vn < 0, the change in coronal free

energy from the ideal terms is not certain.

For reconnective cancellation, with vx 6= 0 and vn = 0, the ideal contributions

increases the coronal free energy, since the only remaining term in equation (22),

−vxBn, is also positive, by assumption.

For cancellation by submergence and emergence, with vn 6= 0 and vx = 0,

|By|— tends to cause the height at which field lines cross the PIL to increase, thereby

lowering the average flux density across the PIL at a given height, and at S in par-

ticular. This analysis assumes the potential field has less shear than the actual field

If equation (25) is correct, then the left hand side of equation (40) is positive, and

cancellation appears to increase the coronal free energy, regardless of whether flux is

cancelling via reconnection or submergence. Such a conclusion would be troubling,

because removing non-potential fields from the corona by submergence certainly low-

ers the free magnetic energy there!

By examining the reconnection and submergence cases separately, one can resolve this

seeming paradox. I illustrate this points with a well known model of a constant-α,

sheared arcade in Cartesian geometry,

Bx = −(kz/kx)B0 sin(kxx) exp−kzz (35)

By = −(α/kx)B0 sin(kx) exp−kzz (36)

Bz = −B0 cos(kx) exp−kzz, (37)

where the force-free parameter is α ≡
√
k2
x − k2

z , and the field is invariant in y and

periodic in x. In this simple model, field lines arch over the PIL, at kxx = π/2, and

lie in vertical planes oriented at an angle tan−1(By/Bx) with respect to the x − z

plane.

The field component along the PIL is determined by α. The potential case corresponds

to α = 0 = By, so kz = kx obtains, and the field lines are perpendicular to the PIL.

As |α| increases and Bn kept fixed at the photosphere, kz decreases (kx is fixed), and

field lines in the arcade rise. Decreasing kz means Bx at the x = 0 plane decreases,

too, because the height at which any given field line crosses x = 0 increases with
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increasing α, thereby diminishing the average flux density normal to the x = 0 plane.

Now consider cancellation by submergence, with vx = 0, and vn = −v0 < 0. First,

more flux parallel to the PIL is being submerged in the non-potential case, though

it does not contribute to cancellation in this (artificial) 2.5D example. Rewriting

equation (40), at x = 0 = z, in terms of the field components gives

4π(Sn − S(P )
n ) = −v0(B2

x +B2
y −B(P )

x ) (38)

= −v0((k2
z + α2)B2

0/k
2
x − kzB2

0/kx) (39)

= −v0B
2
0(1− kz/kx) < 0 , (40)

So the free energy is dropping. Further, the weaker Bx in the actual field at the PIL

means submerging a given amount of the horizontal flux δΦx (equivalent to cancelling

a given amount of normal flux δΦn), requires more time (or a stronger downflow) in

the actual case than in the potential case.

Next, consider cancellation by reconnection at the PIL, with vn = 0, and vx converging

toward the PIL.

6. Discussion

Not surprisingly, cancellation via emergence and submergence of non-potential fields

tends to add and remove, resp., free energy from the corona. What’s less clear is that

reconnective cancellation does so, the simulations of Linker et al. and Amari et al.

notwithstanding.

Reasons I think prominence fields are formed by reconnection in the corona, vs.

emergence of fully-formed flux ropes: 1) a majority of prominences are formed on the

boundaries between active regions (Tang 1987); 2) the hemishperic preference rules

for active regions are much weaker than for prominences, as noted by Pevtsov (private

communication).

Fig. 1 — Zwaan’s (1987) three scenarios to explain cancellation in terms of recon-

nection, which vary in the altitude difference between the magnetograph’s imaging

layer (thick solid line) and the reconnection site (the X-point formed by the thin,

dashed lines). The thick, white arrows illustrate the velocity of the reconnecting flux.

Fig. 2 — a) The normal magnetic field Bn near the PIL in a plane parallel to and two

units away from a line current. b) Selected field lines if the current source is below

the plane. Cancellation of normal flux in the plane would decrease the field energy

above the bottom boundary in this case. c) Selected field lines arising from the same
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boundary condition, but with the current source above the plane. Cancellation of

normal flux in the plane would increase field energy above the bottom boundary.

Fig. 3 — Grayscale indicates Bn in this schematic representation of the local

coordinate system at a point x0 on the PIL (dashed line). Essentially, x̂ ‖ ∇Bn points

from the PIL’s negative side toward the positive side, and ŷ points to the right along

the PIL to an observer standing on the positive side of the PIL.
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