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ABSTRACT

We here review the procedure by which the injected power in bremsstrahlung-
producing electrons is determined from the hard X-ray spectra that they produce.
In particular, we note that low-energy photons are produced in large part by elec-
trons with energies that do not greatly exceed the thermal energy of the target
with which they interact, so that the commonly-used assumption of “cold-target”
energy loss is not applicable over the entire energy range. We show that this sig-
nificantly reduces the inferred energy content of the injected electron distribution,

and even makes the oft-dwelt-upon concept of a “lower cutoff energy” in the in-
jected electron spectrum moot. Convenient formulae are provided for the total

power in the injected electrons.

Subject headings: Sun: flares

1. Introduction

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument
has produced many high-quality hard X-ray spectra from solar flares. These spectra are
of sufficient quality that the corresponding electron distribution function can be accurately
computed. Holman et al. (2003) and Piana et al. (2003) have used such hard X-ray spectra
to calculate the integrated source electron spectrum F(E) (see Brown, Emslie, & Kontar
2003) for a series of times throughout the July 23, 2002 event. Analysis of the form of F/(E)
allows, through modeling of the behavior of the electrons in the source, calculation of the
total power in the injected electrons.

Hard X-ray spectra in solar flares are typically steep (power-law spectral index v 2 3).
The electron spectra derived from these are correspondingly steep (e.g., in the standard
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collisional thick target model of Brown 1971, the spectral index, §,, of the injected electron
flux spectrum F,(F,) is given by é, = v + 1). Since d, > 2, the injected energy flux
[ E,F,(E,)dE, diverges at low energies. To keep the injected energy flux finite, authors
have usually applied a low-energy “cutoff” to the integral, leading to results of the form “so

2

many ergs cm~2 s~ injected above a certain (arbitrary) reference energy.”

Hard X-ray spectra typically show two regions — a steep (thermal) spectrum at low
energies (< 30 keV) and a flatter, power-law, spectrum at higher energies. Since these
two regimes merge smoothly together, the application of an abrupt “low energy cutoff” in
the injected electron spectrum is clearly inappropriate. Moreover, as we show here, it is
also unnecessary. The standard relation between the observed hard X-ray spectrum and
the injected electron flux spectrum (e.g., Brown 1971) assumes that the injected electrons
steadily lose energy in a “cold” target (i.e., one with thermal energy kT < F). However,
electrons with injected energy E 2 kT lose energy at a rate significantly less than in a cold
target and below about E ~ kT, the electrons are part of a thermally relaxed distribution,
as likely to gain energy as lose it. Therefore, the power in the injected electron distribution is
obtained by integrating only over energies F 2 kT', with an appropriate “warm target energy
loss reduction factor” included in the integrand. This results in a finite (and straightforwardly
calculable) value for the total injected electron power, rather than the amount of power above
an (arbitrary) “lower cutoff energy.”

2. Energetics of the Injected Electrons

The hard X-ray flux observed at the Earth (photons cm™2 s™! keV~!) from the injection
of a beam of electrons with energy spectrum F,(E,) (electrons cm™2 s~! keV~!) into a thick
target can be written as (cf. Brown & MacKinnon 1985)

A Qe E)
I(e) = oy /6 G.(B) H(FE)dE, (1)

where A is the flare area, R is the Earth-Sun distance, Q(e, E) (cm? keV~') is the cross
section for emission of a photon of energy e by an electron of energy E, G.(E) = K/E

(keV [cm~2]7') is the energy loss rate per unit column density in a fully ionized, collisionally
cold, target (cf. Emslie 1978),

H(E) = ﬁ /E " Fy(E,) dE,, (2)



-3 -

and g(F) is the ratio of the actual energy loss rate G(F) to G.(E). Brown, Emslie, & Kontar
(2003) have pointed out that the only characteristic of the electron population that can be
inferred solely from fitting (Holman et al. 2003) or inverting (Piana et al. 2003) the hard
X-ray spectrum using a known bremsstrahlung cross-section is the mean electron spectrum
F(E) in the source; defined through

19 = gV [ Qe E)F(B)dE, 3)

where 7 is the mean source density and V' the emitting volume. Comparing Equations (1)
and (3), we see that

3l

v FB)

H(E) = — F(E)G.(E) 1T E 5 (4)

A
Multiplying both sides of Equation (2) by g(FE), differentiating with respect to E, and
then substituting for H(FE) from Equation (4) gives

Wl [@gwﬂ o (5)

Equation (5) is the general relation between the mean source electron spectrum F(E)
and the injected spectrum F,(E,). For a cold target, g(E) = 1 and we recover Equation (11)
of Brown & Emslie (1988), viz.

AV F(E,) dInF
Fo(Bo) = K —p5 {1 o E]E:Eo. (6)

For a power-law F(E) ~ E~% this gives F,(FE,) ~ E;%, where the injected spectral index
do = § + 2. However, for g(E) # 1, the actual form for F,(E,) can differ substantially from
this power-law form. Specifically, if g(E) is less than unity and an increasing function of
energy, it can readily be shown from Equation (5) that F,(F,) will be everywhere less than
the value appropriate to a collisional cold target — physically, this is because the decrease in
energy loss rate with decreasing energy leads to a smaller number of electrons required at
low energies. This has significant implications for the energy content of the injected electron
distribution, as we shall see below.

The injected energy flux (ergs cm 2 s’l) above reference energy Fy is F; = f ;f E,F,(E,)dE,.
Substituting from Equation (5) for F,(E,) and integrating by parts, we obtain
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The electron energy flux F; thus depends on a combination of F(E) and a weighted
integral of it; it is therefore fairly insensitive to the detailed form of F(E). Hence, for
illustrative purposes, we now assume that F(E) has been fitted with a power-law form
F(E) = CE~° (although the analysis to follow can be straightforwardly generalized to
arbitrary forms of F[E]). This gives

Fi = %KO {E‘l_‘sg(El) +/ E~1g(E) dE} : (8)
Ey
For a fully ionized cold target, g(E) = 1 and we obtain F; = (aV/A) KC (&) E°.
This expression clearly diverges as F; — 0, requiring that we impose an arbitary finite value
for F; in order to keep the total injected energy flux finite. However, using the substitution
z = E1/E in Equation (8), we find that the actual injected energy flux above energy Ej
differs from the cold-target-inferred value by the factor

8150 = 5 [o(B + [ o gt )] o)

which is equal to 1 for g(E) = 1 and less than unity if g(E) < 1 everywhere. (Reduced
energy loss rates for the bremsstrahlung-producing electrons require fewer electrons for a
given hard X-ray yield.)

As pointed out by Brown & MacKinnon (1985), there are several factors that can
influence the expression for g(E). For example, a varying degree of target ionization renders
the energy loss rate G(E) a function of position in the target (Brown 1972) and hence
implicitly a function of E. The primary interest here, however, is the determination of the
total energy content in the injected electrons. Since the bulk of the electron energy content
is contained in low-energy electrons, which interact principally with the ionized (coronal)
regions of the flare volume, the principal factor controlling g(E) is the effect of a “warm”
target (i.e. Ey ~ kT), through Equation (7) or (8), on Fj. Spitzer (1962; Equation [5-24])
gives the formula for the energy loss rate in a target of temperature 7', from which we obtain
the expression for the energy loss rate relative to a fully-ionized cold target:

) = ext(\ ) =2y [ Zaar ([ 2), (10
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where erf(z) is the error function. Figure 1 shows f(E;/kT) for various values of §. For
(E1/kT)Z 5, f ~ 1 and a cold target analysis is indeed appropriate. However, for lower
values of E;/kT, there is a substantial reduction in the injected electron energy flux relative
to that inferred from a cold target analysis.
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Fig. 1.— Ratio of injected electron energy flux above reference energy FE; relative to the
same quantity inferred through a cold (kT < E;) target analysis (see Equation [9]). Curves
are shown for various values of §, the power-law spectral index of F(E), the instantaneous
mean electron flux spectrum in the source.
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For values of E/kT < 1, the energy loss rate given by Equation (10) is negative: particles
gain more energy from the high-energy tail of the ambient Maxwellian distribution than
they lose to the bulk. The energy regime E < kT is more appropriately described as a
thermally relaxed ensemble of particles, with no secular energy losses. The total injected
power Py = Fios X A therefore approaches a fized value

[e o]

Pt =V K C / E; " gw(E,) dE,, (11)

0.98kT

where 0.98kT is the value of E; for which g(F;) = 0. The product 7V C is directly determined
from the observed photon spectrum (see Equation [1] of Brown, Emslie, & Kontar 2003);
hence we can evaluate Py directly from the observed photon spectrum. We stress that this
lower limit on the integral in Equation (11) is not an arbitrary reference value; it is imposed
by the physics of electron energy loss in the target.
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Fig. 2.— Ratio of total injected electron power to the power above 0.98kT inferred through
a cold-target analysis (see Equation [12]), as a function of the mean electron flux spectral
index .
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Fig. 3.— Ratio of total injected electron power to the power above 5kT inferred through a
cold-target analysis, as a function of the mean electron flux spectral index J.
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The ratio of Pioy (Equation [11]) to the “cold-target” injected power above reference
energy Ey = 0.98kT [viz. Py = nV KC(*1)(0.98kT)°] is (by [9])

§ [P 5., (098
Ro.93(9) = 5+—1/0 Ty <7> dz. (12)

Figure 2 shows the behavior of Rggg(d). The total injected power in the electrons is only
some (2-10)% of the ‘cold-target” injected power above 0.98kT. This may seem like a very
small percentage; however, it is based on a very low value of E;. A more informative
quantity would be Rj, the ratio of the total injected power to the “cold-target” power in
the truly cold-target regime E > 5kT (Figure 1). Since the cold-target power scales as
E%, Rs(6) = (5/0.98)% x Rygs. Figure 3 shows Rs(d). For example, for § = 3, the total
power over the entire electron distribution P, is 7.4 times the “cold-target” injected electron
power above 5kT. [Equivalently, we could state that the total power is equivalent to the
“cold-target” power above an “effective cutoff” energy E,,, where E,% = R5() x (5kT)~°,
ie. By, = 5kT X R5_1/5. For § = 3, this gives an effective cutoff energy of 2.57kT'.]

For the July 23, 2002 flare, Holman et al. (2003) estimate the temperature of the
thermal source to vary between 2 x 10" K and 3.5 x 107 K, corresponding to kT in the range
2 — 3 keV. It is reasonable to assume that this is representative of the target with which the
non-thermal electrons interact. The column density required to stop a 30 keV (> 10kT, well
into the cold target regime) electron is only of order 10%° cm™2 (cf. Emslie 1978), less than
the column density of the flaring corona several minutes into the main phase of the flare.
Thus the electrons carrying the bulk of the injected power (i.e., those with energies in the
range ~ kT to ~ 5kT') principally interact with the hot coronal regions of the flare.

For power-law forms F(E) ~ E~°, the total injected power Py can be obtained from
multiplying the cold-target-inferred injected power above 5kT by Rs(d). The total energy
content for the main phase of the July 23, 2002 flare has been estimated by Holman et al.
(2003) using such a procedure. For more general forms of F(E) (see Piana et al. 2003),
Equation (7), with E; = 0.98kT, can be used.

3. Summary and Conclusions

We have shown that consideration of energy loss by bremsstrahlung-producing electrons
in solar flares leads naturally to a finite total injected electron power. There is no need to
impose an arbitrary “low energy cutoff” to the injected electron distribution. Electrons with
energies < kT essentially lose no energy in the target, while those with energies in the range
~ kT to ~ bkT suffer a significantly smaller energy loss rate than they would if the target
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were cold. Hence the total injected power Py, can be calculated using an expression (cf.
Equation [7]) that is similar to that for a cold target analysis, but which incorporates a
factor g(E,) that is close to zero at energies E, < kT, thereafter increasing smoothly toward
unity at energies E, 2 5kT. Contrary to the behavior in the cold target case, this integral is
finite and provides the total power in the injected electron distribution.

This work was supported by NASA’s Office of Space Science via a RHESSI grant through
the University of California, Berkeley. I thank John Brown for several very helpful comments.
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