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ABSTRACT

Hard X-ray spectra in solar flares provide information on electron accelera-

tion and propagation processes. We here point out that the inference of these

processes involves two distinct steps: first, the model-independent deconvolution

of the hard X-ray spectrum to obtain the effective mean electron spectrum F̄ (E)

in the source; and second, the model-dependent interpretation of this mean spec-

trum in terms of physical processes operating in that source. Thus, the mean

electron spectrum is a natural “middle ground” on which to compare the pre-

dictions of models with observations, and we urge the presentation of results,

both from analysis of photon spectra and from modeling of candidate physical

processes, in the form of F̄ (E) spectra. We consider the constraints that various

source models impose on F̄ (E) and we present explicit forms for an illustrative

F̄ (E) corresponding to the injection of a power-law spectrum of electrons into a

thick target of nonuniform ionization level.

Subject headings: Sun: flares

1. Introduction

Much attention has been paid to the inference of accelerated electron spectra and/or

temperature distributions from high-resolution hard X-ray spectra such as from RHESSI

(e.g., Piana & Brown 1998). Such analyses involve a variety of assumptions regarding (a) the

emission process, and in particular the bremsstrahlung cross-section used, and (b) modelling

factors such as the location of the electron acceleration region and physical conditions in the

propagation region. Due to the different extent to which such factors have been considered,

it is sometimes challenging to compare results.
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To improve upon this unnecessarily confusing situation, in this Letter we point out

that the basic information contained in any observed hard X-ray spectrum I(ε) is the mean

electron flux spectrum F̄ (E) in the source. Determination of F̄ (E) from observed hard X-ray

spectra depends only on the bremsstrahlung cross-section used and involves no assumptions

whatsoever about the acceleration or propagation of the electrons in the target. Conversely,

theoretical prediction of F̄ (E) involves no assumptions about the cross-section and depends

only on physical processes in the source. The quantity F̄ (E) therefore represents the natural

“middle ground” for comparison of models with observation, and hence we urge its adoption

as a fiducial reference for both observational analyses of hard X-ray spectra (see Holman

et al. 2003; Piana et al. 2003) and theoretical models of electron dynamics (see Emslie

2003).

2. Inference of Mean Electron Flux Spectra from Hard X-ray Spectra

Following Brown (1971), we define the mean target proton density n̄ = V −1
∫

n(r) dV

and write the photon spectrum at distance R as

I(ε) =
1

4πR2
n̄V

∫

∞

ε

F̄ (E) Q(ε, E) dE, (1)

where the cross-section Q(ε, E) includes the effect of heavy ions in the target and F̄ (E) is

the mean electron flux spectrum defined by

F̄ (E) =
1

n̄V

∫

V

F (E, r) n(r) dV. (2)

(Equation [1] assumes that the cross-section is a function only of E and ε and so is assumed

isotropic and unpolarized.) Equation (1) is a Volterra integral equation for the mean electron

flux spectrum F̄ (E) corresponding to an observed photon flux spectrum I(ε). Its solution

is problematic (e.g., Craig & Brown 1976), requiring algorithms to suppress noise amplifica-

tion while preserving information on the source function F̄ (E) (e.g., Piana & Brown 1998).

However, the crucial point is that the determination of F̄ (E) depends only on the form of

Q(ε, E); it assumes nothing about the physical processes operating in the source.

What is the significance of F̄ (E)? It is the electron spectrum that would be required

to produce the observed photon spectrum in a homogeneous source of proton density n̄

and volume V . Equivalently, it is the mean electron flux spectrum incident upon a target

proton in an inhomogeneous source. Johns & Lin (1992) refer to this quantity as the “X-ray-

producing electron spectrum.” From a theoretical viewpoint, this spectrum is determined by
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many physical properties, such as the location of, and spectrum from, the acceleration region

and the form of subsequent energy losses. Observationally, however, it is the sole quantity

that can be inferred from a photon spectrum without knowledge of any of these factors:

once F̄ (E) has been found from inversion of Equation (1), all subsequent interpretation of

F̄ (E) concerns only physical processes in the source and not the form of Q(ε, E) chosen.

We therefore recommend that high quality hard X-ray spectra, such as from RHESSI, be

inverted (or forward-fitted) to obtain F̄ (E) (or, with a simple scaling, the target-integrated

spectrum
∫

F (E, r) n(r) dV ), and that further (source-model-dependent) analyses be sep-

arated from this initial step. Likewise, we recommend that modelers aim at synthesizing

F̄ (E) (or
∫

F (E, r) n(r) dV ) forms to be compared with observationally-inferred ones. (To

ease intercomparison of results, we also suggest that observational inference of F̄ (E) should

utilize a standardized [isotropic] cross section Q[ε, E].) Through a such a standardization,

we can greatly facilitate intercomparison of results and also maintain an appropriate degree

of independence between observational and theoretical analyses.

Solar hard X-rays also include a photospheric albedo contribution. Ideally, one should

deconvolve the primary source spectrum from the total observed spectrum before proceeding

with (1). However, this process is inherently nonlinear and difficult to carry out. We therefore

propose that F̄ (E) be calculated by a straightforward inversion of the total observed photon

spectrum I(ε) and that interpretation of the resulting form of F̄ (E) (the effective mean

electron flux spectrum) take into account the effect of albedo (Alexander & Brown 2002).

3. An Example of a Mean Electron Flux Spectrum and its Interpretation

Determination of F̄ (E) from Equation (1) is mathematically equivalent to determining

the electron flux spectrum corresponding to a thin-target I(ε) – a well-understood problem

(e.g., Brown 1971). Forms of F̄ (E) inferred from hard X-ray data appear in companion pa-

pers (Holman et al. 2003; Piana et al. 2003). We here illustrate the theoretical construction

of an F̄ (E) by considering the case of a beam of electrons traversing a target with a spatially

nonuniform ionization.

Electrons traversing a neutral target suffer energy losses reduced by a constant factor

(' 3) relative to an ionized target (e.g., Brown 1973; Emslie 1978). Electrons therefore have

a higher bremsstrahlung “efficiency” in partially-ionized regions. Following Brown et al.

(1998), Kontar, Brown, & McArthur (2002; hereafter KBM) calculated the bremsstrahlung

emission resulting from a power-law injection spectrum (Fo[Eo] = CE−δ
o ) for a target con-

sisting of an ionized corona situated above a neutral chromosphere, neglecting scattering

effects. If we write n dV = A dN , where A is the flare area (cm2) and N the column density



– 4 –

(cm−2) normal to that area, comparison of Equation (1) with Equation (7) of KBM shows

that

F̄ (E) ∼ A

∫

∞

0

F (E, N) dN =
A C E2−δ

(δ − 1)K

[

1 + ν

(

1 +
E2

∗

E2

)
1−δ

2

]

. (3)

Here E2

∗
= 2KN∗, where N∗ is the column density at which the ionization level changes

abruptly and K = 2πe4Λ (with e the electronic charge and Λ the Coulomb logarithm for

an ionized target). Kontar et al. (2003) have shown that N∗ is roughly equal to 4Ntr,

where Ntr is the column density of the corona/chromosphere interface. (Although KBM

used the Kramers bremsstrahlung cross-section Q(ε, E) ∼ 1/εE to find I(ε), Equation [3]

relates solely to electron dynamics and so is valid for any bremsstrahlung cross-section. To

see this explicitly, one can include a cross-section multiplying factor q(ε, E) in the outer

[bremsstrahlung-related] integrals in KBM without changing the inner [electron-dynamic

related] expression.)

Having established the quantity F̄ (E) purely from modelling of electron dynamics, one

can then discuss its properties and compare them with those of the F̄ (E) that is inferred

from observational analysis (Equation [1]). For example, at small and large values of E/E∗

the source-integrated spectrum (3) respectively approaches the limits

F̄ (E) ∼ A C

(δ − 1)K
E2−δ; F̄ (E) ∼ (1 + ν)

A C

(δ − 1)K
E2−δ. (4)

The former is the result for a wholly ionized target, since low-energy electrons are mostly

stopped in the ionized corona, while the latter is the result for a wholly neutral target, since

the high-energy electrons are mostly stopped in the chromosphere. The source-integrated

spectrum A
∫

F (E, N) dN (∝ F̄ [E]) thus transitions from a power law of index (δ − 2) at

low energies to a power law of the same slope, but larger by a factor (1+ν), at high energies,

transitioning at E ∼ E∗. Figure 1 shows the shape of F̄ (E) for various δ, where a value

ν = 1.8 (cf. Brown et al. 1998) has been used. The spectrum flattens in the vicinity of

E∗, so that the “local” electron spectral index δE(E) = −d log(F̄ (E))/d log E is reduced

relative to the value in a uniform target. Figure 2 shows the difference between δE(E) and

the uniform-target value (δ − 2) for various δ. The spectrum hardens by approximately

half a power near E∗; the amount of the hardening and the energy at which the spectrum is

hardest both increase with δ. Such a signature in δE(E) forms inferred from hard X-ray data

could be indicative of a nonuniform target ionization, with a transition region column density

Ntr ' (1/4)× (E2

∗
/2K), where E∗ is the location of the minimum in δE. Such analysis could

in principle determine the variation of Ntr throughout the duration of a flare for comparison
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with hydrodynamic models of atmospheric response to flare heating (cf. Kontar et al. 2003).
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Fig. 1.— Form of F̄ (E) for a power-law spectrum injected into a nonuniformly ionized

target.
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Fig. 2.— Variation of δE relative to its uniform-target value (δ − 2) as a function of energy

for the mean target spectrum form [cf. Figure 1], for various values of the injected spectral

index δ.
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4. Constraints on The Mean Electron Spectrum in Various Source Models

Brown & Emslie (1988; hereafter BE) discussed analytic constraints on bremsstrahlung

spectra produced by various types of source, such as a thick target and a thermal (but not

necessarily isothermal) source. Their results were presented as constraints on photon spectra,

using the Kramers cross-section. Here we recognize the important fact that these results are

more properly expressed as constraints on the mean electron spectrum F̄ (E), independent

of Q(ε, E). For example, consistency of a F̄ (E) with a collisional thick-target model requires

(Equation [10] of BE)

d

dE

[

1

E
F̄ (E)

]

< 0 (5)

while for a thermal source (Equation [16] of BE),

(−1)n dn

dEn

[

1

E
F̄ (E)

]

> 0 ∀n. (6)

This “alternating signs of multiple derivatives” condition arises by repeated differenti-

ation with respect to E of (Equation [13] of BE)

F̄ (E)

E
∝

∫

∞

0

ξ(T )

T 3/2
e−E/T dT, (7)

where T is the temperature (keV) and ξ(T ) is the differential emission measure. This shows

that F̄ (E)/E is the Laplace transform of the non-negative function ξ̂(s) (related to ξ[T ] by

ξ̂[s] = ξ[1/s]/
√

s), so that an F̄ (E) is consistent with a thermal source if and only if its

inverse Laplace transform is everywhere non-negative.

We can, for example, ask whether the F̄ (E) corresponding to the injection of a power-law

into a nonuniformly ionized target produces a photon spectrum that could be interpreted as

thermal. Taking the inverse Laplace transform of the F̄ (E)/E of Equation (3) gives, within

a constant factor,

ξ̂(s) =
sδ−2

Γ(δ − 1)
+ ν

√
π

Γ
(

δ−1

2

)

(

s

2E∗

)
δ

2
−1

J δ

2
−1

(E∗s), (8)

where Jn(x) is the Bessel function of order n. For ν = 1.8, all values of δ > 2 yield positive

definite functions ξ̂(s). Thus quite diverse (and not intrinsically thermal) forms of F̄ (E) can

be mimicked by thermal sources. However, by no means can all forms of F̄ (E) be produced

by a thermal source (cf. BE). In particular, ξ̂(s) is ≥ 0 only for sufficiently small ν; for larger

ν the oscillatory term in (8)would be magnified to yield (unphysical) regions of negative ξ(T ).
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5. Summary

The primary purpose of this communication is to establish a natural fiducial “middle

ground” for comparison of hard X-ray data with models of electron acceleration and transport

in solar flares. We have shown that the mean electron flux spectrum F̄ (E) is the natural

candidate for this middle ground, separating cleanly the effects of radiation physics and

electron dynamics. We have presented criteria that F̄ (E) must satisfy in certain source

models and easily-identifiable characteristics of F̄ (E) forms in others. In companion papers

(Holman et al. 2003, Piana et al. 2003), forms of F̄ (E) deduced from RHESSI observations

of the July 23, 2002 solar flare are presented and briefly discussed.

This work was supported by NASA’s Office of Space Science and by PPARC RHESSI

Mission and Visitor Grants.
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