Update on Solar Orbiter / STIX

Spectrometer/Telescope for Imaging X-rays

G. Hurford, A. Benz, S. Krucker, and the STIX Team

7 April 2011

Solar Orbiter Mission

Key science objectives

- Particles, plasmas and fields in inner heliosphere
- Links between solar surface, corona and inner heliosphere
- Magnetic field dynamics geometry and dynamics
- Solar dynamo using high latitude fields and flows and helioseismology

0.284 AU perihelion Inclination to 34 degrees

STIX Requirements Summary

Energy Range	4 – 150 keV	
Energy Resolution (FWHM)	1 keV @ 6 keV to	
	15 keV @ 150 keV	
Effective area	6 cm²	
Finest angular resolution	7 arcsec	
Coarsest angular resolution	3 arcmin	
Field of view	2° (Full Sun at perihelion)	
Image placement accuracy	<4 arcsec	
Time resolution (statistics limited)	~0.1 s	<u>RHESSI</u>
Mass	6 kg	
Power	4 watts	142 w
Telemetry	25 B/s	20 kB/s

STIX is a much more modest instrument than RHESSI

STIX Imaging Concept

- 3-axis stabilized s/c
 - Use spatial modulation, not time modulation to measure visibilities.
- Each collimator can measure one Fourier component of the source distribution
- 32 subcollimators
 - 30 Fourier components
 - + Flare locator
 - + Background monitor / high flux spectrometer
- Image quality comparable to Yohkoh / HXT but with much better spectral resolution

STIX Measurement of Visibilities

Relative count rates among 4 pixels \rightarrow redundant measurement of visibility and flux

STIX Spectrometer

- 32 10x10x1 mm thick CdTe detectors
- Mounted on 32 'Caliste' ASICs
- Passively cooled to -20C
- 12 pixels per detector
 - + guard ring

High-Rate Handling

- STIX sensitivity helped by 1/r2 and low detector background
- Can electronically reduce effective area of pixelated detectors during high rate conditions

- Observations of intense events are throughput limited (~10^6/s), not flux limited
- 10 mm
- Moveable attenuator enhances ratio of high energy to low energy counts in large events
- Combination of pixelated detectors and attenuators
 - → STIX can image A1 class flares.
 - → STIX can image thermal and nonthermal x-rays in X30 class flares.

STIX Data Handling

an evolving issue

- Current allocation = 25 Bytes/second
- STIX data is flare-dominated, not background-dominated
- On board conversion of native energy channels to 32 scienceoptimized detector-matched energy channels
 Instrument flash memory can store many months of 'raw' data
- Data selection options range from:
 - Onboard flare identification and time/energy bin selection
 - Post facto requests from ground?
- Data compression options range from:
 - Accumulator-based pseudo-RHESSI-like flexibility
 - Transmission of 30 visibilities per time/energy bin
 - → 60 bytes/image
 - → ~1000 statistically significant images/hour x N years

Current STIX Status

- July 2010 Began STIX Phase B
- Oct 2011 Solar Orbiter mission confirmation?
- Nov 2011 STIX Preliminary Design Review
- Jan 2012 Begin Phase C,D
- Jan 2017 LAUNCH
- 2020 Main science phase begins