Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS)

Albert Y. Shih (NASA/GSFC)

on behalf of the GRIPS team

2011 April 7

Solar-flare particle acceleration

- Flares are powerful and efficient accelerators
- $>^{\sim} 10^{32}$ ergs in particles
- Spatial separation between ions (blue) and electrons (red) is not consistent with models
- Polarimetry can measure pitch-angle distributions

(Hurford et al. 2006)

Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS)

- Recently funded NASA LCAS balloon mission
- 3D position-sensitive germanium spectrometer
- High spectral resolution ($\sim 2 \mathrm{keV}$ FWHM at 662 keV)
- Compton-scatter track reconstruction
- Uses a rotating grid to selectively mask off the Sun to produce gamma-ray images
- Will resolve gamma-ray footpoints in many flares
- Measures gamma-ray polarization "for free"
- Proves technologies for a future space mission

GRIPS components

Multi-pitch rotating modulator (MPRM), 2-cm thick tungsten

Other components include:
Cryostat/cryocooler Electronics, with ASICs Anti-coincidence BGO shield Solar aspect system

GRIPS imaging simulations

- Due to spatial sensitivity of the spectrometer, only one grid plane (and only one grid) needed
- Quasi-continuous, 2D coverage in the spatial frequency (u-v) plane
- Backprojections for (a) 1, (b) 3, (c) 10, (d) 30, (e) 100, and (f) 1000 photons
- Point-response function virtually free of sidelobes

(d)

GRIPS ASIC from GM-Ideas

The future of GRIPS?

Specifications

- Four modules, each with a GRIPS-like spectrometer
- Tungsten mask for modulation
- Rotating like GRIPS
- Or, non-rotating for sparser sampling of Fourier space
- 15-meter separation for 7" FWHM angular resolution
- Self-deploying (ATK Coilable boom)
- Or, articlated (ATK ADAM mast)
tungsten mask \longrightarrow
(1 of 4 modules)

