
Solar Physics (2004) 225: 293–309 C© Springer 2005

GENERALIZED REGULARIZATION TECHNIQUES WITH
CONSTRAINTS FOR THE ANALYSIS OF SOLAR BREMSSTRAHLUNG

X-RAY SPECTRA

EDUARD P. KONTAR1, MICHELE PIANA2, ANNA MARIA MASSONE3,
A. GORDON EMSLIE4 and JOHN C. BROWN1

1Department of Physics and Astronomy, The University of Glasgow, G12 8QQ, U.K.
(e-mail: eduard@astro.gla.ac.uk)
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Abstract. Hard X-ray spectra in solar flares provide knowledge of the electron spectrum that results
from acceleration and propagation in the solar atmosphere. However, the inference of the electron
spectra from solar X-ray spectra is an ill-posed inverse problem. Here, we develop and apply an
enhanced regularization algorithm for this process making use of physical constraints on the form
of the electron spectrum. The algorithm incorporates various features not heretofore employed in
the solar flare context: Generalized Singular Value Decomposition (GSVD) to deal with different
orders of constraints; rectangular form of the cross-section matrix to extend the solution energy
range; regularization with various forms of the smoothing operator; and “preconditioning” of the
problem. We show by simulations that this technique yields electron spectra with considerably more
information and higher quality than previous algorithms.

1. Introduction

To address fundamental questions on electron propagation and acceleration in so-
lar flares, it is necessary to infer as much quantitative information as possible on
the electron spectrum in the solar plasma. A long-standing method of doing this
involves the analysis of the emitted hard X-ray (HXR) bremsstrahlung spectrum,
in particular the inversion of the integral equation (Brown, 1971) relating the two
spectra. This task is particularly challenging since even the most accurate photon
spectra are contaminated by noise, which is dramatically amplified in any uncon-
strained attempt to extract the electron flux spectrum. Traditional approaches to the
determination of the electron spectrum sidestep this problem by assuming simple
(e.g., isothermal + power-law) forms and adjusting their parameters to achieve the
best fit to the HXR data (e.g., Holman et al., 2003). However, such algorithms, by
their very nature, cannot detect features in the electron spectrum that, although real,
were not included into the prescribed empirical form. Indeed, the analysis of high-
resolution RHESSI (Ramaty High-Energy Solar Spectroscopic Imager) (Lin et al.,
2002) spectra shows substantial deviations from simple models (Kontar et al., 2003).
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While this was adequate for earlier low-resolution data, the goal in high-resolution
photon spectrum analysis should be the suppression of noise-induced unphysical
behavior in the electron flux, while maintaining maximum ability to recover faith-
fully real features. Various algorithms have been employed with this intent (see,
e.g., Johns and Lin, 1992; Thompson et al., 1992; Piana, 1994; Piana and Brown,
1998: Piana et al., 2003) all belonging to the wide class of regularization methods
for linear ill-posed inverse problems, though differing in method of regularization.
For example, Johns and Lin (1992) sum over energy intervals to obtain sufficiently
good statistical accuracy (regularization by coarse energy binning). Their results
suggested downturn of the electron spectra below 50 keV, though the results were
too uncertain to be conclusive. Piana et al. (2003) have detected, through Tiknonov
regularized inversion (Tikhonov, 1963), a feature at E � 55 keV in the mean source
electron spectrum for the July 23, 2002 solar flare, that has been impossible to detect
through a forward-fitting algorithm involving power-law functions such as those
used by Holman et al. (2003). Although it has not been possible so far to establish
the origin of this particular feature,1 nevertheless the F̄(E) form obtained by Pi-
ana et al. (2003) is a faithful description of the F̄(E) corresponding to the photon
spectrum used.

An observed hard X-ray spectrum I (ε) is related, through a bremsstrahlung
cross-section Q(ε, E), to the mean electron flux spectrum F̄(E) in the source,
through the relation (Brown, 1971; Johns and Lin, 1992; Brown, Emslie, and Kontar,
2003)

I (ε) = 1

4π R2
n̄V

∫ ∞

ε

F̄(E) Q(ε, E) d E, (1)

where R is the distance to the observer, V is the emitting volume and n̄ =
V −1

∫
n(r)dV is the mean target density. The problem of determining F̄(E) from

I (ε) when they are related by a Volterra-type Equation such as (1) is an ill-posed
problem in the sense of Hadamard (1923). As a result, every experimental prob-
lem described by an equation like (1) is affected by a numerical pathology termed
ill-conditioning whereby, when an unconstrained solution procedure is followed,
the presence of measurement noise is reflected in unphysical oscillations in the re-
constructed solution for the source function. To obtain a meaningful solution F̄(E)
one needs to avoid noise amplification (e.g., Craig and Brown, 1986) by means of
regularization methods applying physical constraints to the electron spectrum. The
algorithm looks for an approximate least-squares solution of the integral equation
relating the photon and the electron spectra, but subject to inclusion of additional
information based on physically meaningful constraints or assumptions on the so-
lution. This leads to the formulation of a family of regularization methods exploit-
ing different possible a priori information on the electron flux coming from solar

1It is possible that this particular feature has non-solar origin and is a result of the effects of pulse
pile-up – Smith et al. (2002).
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physics. The aim of the present paper is to introduce this generalized constraint
approach into the field of solar HXR spectrum analysis, together with various other
new features (physical, mathematical and numerical) yielding a more effective al-
gorithm, based on Generalized Singular Value Decomposition, for determination
of F̄(E). More precisely, in this paper we will discuss the three major problems
concerning the application of a regularization approach to the analysis of HXR
data, that is: how to effectively introduce physically meaningful constraints into
the inversion procedure; how to tune the stability requirement avoiding artificial
clustering in the residuals, and, finally, how to adapt the regularization techniques
to solar data characterized by huge dynamical ranges.

The plan of the paper is as follows. In Section 2 we review the mathematical
formulation of the problem pointing out its numerical instability. In Section 3
we discuss the relation between regularization and physical constraints, while in
Section 4 we describe the regularization and the computational method based on the
Generalized Singular Value Decomposition. In Section 5 a solution is proposed,
through analysis of the cumulative residuals, to the crucial problem of optimal
choice of the regularization parameter which controls the trade-off between stability
and loss of information. In Section 6 we perform an analysis of the solution structure.
Finally, in Section 7 we present some applications in the case of simulated photon
spectra to demonstrate the improvements achievable and the summary is presented
in Section 8.

In a subsequent paper (Kontar et al., 2004 (hereafter Paper II)) we will apply
this approach to real spectra observed with RHESSI (Lin et al., 2002).

2. Mathematical Formulation

Equation (1) is a Volterra integral equation of the first kind and can be expressed
in terms of a linear integral operator A : X → Y,

(AF̄)(ε) ≡ 1

4π R2
n̄ V

∫ ∞

ε

F̄(E) Q(ε, E) d E, (2)

where X and Y are two appropriate functional (Hilbert) spaces. For physical forms
of the bremsstrahlung cross-section Q, A is a compact linear operator so that
(Bertero, De Mol, and Pike, 1985) every discretization of Equation (2) is character-
ized by (significant) numerical instabilities. Let us, then, consider some convenient
discretized form of (1), viz. the linear system

AF̄ = g, (3)

where

Ai j = n̄V

4π R2
Q((εi+1 + εi )/2, (E j+1 + E j )/2) δE j ,

i = 1, . . . , N , j = 1, . . . , M(> N ), (4)
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F̄ = (F̄(E1), . . . , F̄(EM)), g = (g(ε1), . . . , g(εN )), with M > N , and the δE j and
δεi are appropriate weights. The values g(εi ) correspond to a set of discrete photon
counts in energy bands εi → εi + δεi , while the F̄(E j ) are the corresponding
values of the mean electron flux in energy bands E j → E j + δE j . We use a matrix
A corresponding to the bremsstrahlung cross-section due to Haug (1997) with the
Elwert (1939) Coulomb correction applied.2

It is important to recognize that, since electrons of all energies E ≥ ε con-
tribute to the photon emission at energy ε, in general the hard X-ray spectrum
over a finite range [ε1, εN ] of photon energies contains information on the electron
spectrum over a much wider range, in particular within the range εN < E < EM

above the uppermost photon energy. For example, if F̄(E) has an upper energy
cutoff at E = Emax > εN , then this cutoff will affect the observed photon spec-
trum below εN , since the photon spectrum must tend to zero at ε → Emax. Hence,
by extending our array of E values to a sufficiently high value, the solution
of (3) can potentially reveal evidence of an upper energy cutoff (see Section 7
below).

Since M > N , problem (3) is under determined, i.e., there is no unique so-
lution of the linear system. The same holds true if we consider the least-squares
problem

‖AF̄ − g‖2 = min, (5)

where ‖·‖ is the canonical Euclidean norm defined by

‖ f ‖ ≡
(∫ xmax

xmin

f 2(x)dx

)1/2

. (6)

The solutions of (5) are commonly known as pseudo solutions (Bertero, De Mol,
and Pike, 1985). Obviously, additional constraints need to be applied to obtain a
unique solution.

3. Physical Constraints and Regularization

As a physical quantity F̄ must satisfy various physical conditions such as F̄ ≥ 0
and any known constraints such as properties which are to be conserved or to be
minimized/maximized. Many such properties can be expressed, for a suitable closed
operator L, in the form

‖LF̄‖ ≤ const, (7)

2Note that the Elwert correction is not applicable for the high-frequency limit, ε � E . However, since
photons of energy ε are produced, in general, by a wide range of electron energies E , the neglect of a
more sophisticated form of the cross-section in this very narrow energy range does not significantly
affect our results.
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leading to the need to solve least-square problem (5) subject to additional constraint
(7). This constrained minimum problem can be solved using the Lagrange multiplier
method, namely

L(F̄) ≡ ‖AF̄ − g‖2 + λ‖LF̄‖2 = min, (8)

where λ is a Lagrange multiplier. This approach to regularize the problem is known
as the Tikhonov regularization (Tikhonov, 1963).

Three possible different choices for L are discussed in the following.
As a first example, we observe that the density-weighted target-averaged energy-

integrated flux of electrons is given by the Euclidean norm ‖F̄‖. Physically, this
quantity must be fixed by the total flux (the function of the total number of elec-
trons or energy), a requirement that can be met by a suitable choice of the second
(constraint) term in Equation (8), the simplest choice being ‖F̄‖ or L = 1, the iden-
tity matrix, so that the second term of Equation (8) is just the Euclidean norm of
the solution F̄. Problem (8) with this constraint operator is also termed zero order
regularization and was used by Piana et al. (2003) for solar data. It defines the
non-parametric F̄(E) of target-averaged total electron flux consistent with the data
for a given parameter λ to be chosen via some appropriate additional condition.

The source averaged electron flux F̄(E) physically results from a combination
of the injected electron flux F0(E0) spectrum and the physics of particle transport
in the radiating source. Under a broad, but not comprehensive range of conditions,
these flux spectra are related by (Brown and McKinnon, 1985)

F̄(E) ∼ 1

|d E/d N |
∫ ∞

E
F0(E0)d E0, (9)

where d E/d N is the rate of energy loss per unit column density. For example, for
collisional energy losses in a cold target, d E/d N ∼ −1/E and therefore (Brown
and Emslie, 1988)

F0(E0) ∼ − d

d E

[
F̄(E)

E

]
E=E0

. (10)

Equation (10) shows that, if the purpose of finding a solution F̄(E) is to subsequently
use that solution to infer the injected electron flux spectrum F0(E0), then the mean
electron flux should be differentiable, a requirement which can be incorporated
in (8) by adopting for L the differentiation operator L ∼ D1 which is termed first
order regularization.

Physically, if the electron acceleration can be described deterministically, e.g.,
the injection function resulted from acceleration can be presented similar to an inte-
gral (9) with systematic acceleration instead of deceleration, then the injected spec-
trum should be a differential function. For example, acceleration by an electric field
leads to differentiable spectrum of accelerated (injected) electrons. If we believe
the injection function is differentiable, then F̄(E) should not only be differentiable,
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but have a differentiable first derivative. This corresponds to the requirement of a
bounded second order derivative, hence to second order regularization L ∼ D2.

It is informative to consider the effect of applying regularization methods of very
high order, since they can obscure physical features in F̄(E) that do not comply
with the imposed smoothness constraint. The k-order derivative D(k)F̄ cannot be
defined over less than k points, which reduces the dimension of the solution space
to N − k for N data points. This makes higher-order solutions more restrictive and
potentially less precise though in practice the high-resolution data now available
have such large N ∼ 300 that this is not an issue for any reasonable order of regu-
larization. However, in the case of forward-fitting procedures, the natural N ∼ 300
dimensional space of possible solutions is forcefully squeezed into the space of only
a few dimensions ( 5 in the case of power-law + isothermal components – Holman
et al., 2003) which corresponds to very-high-order regularization and hence is very
restrictive.

4. Regularized Solution and Generalized Singular Value Decomposition

Provided that the null spaces of the matrices A and L intersect trivially (i.e., AF = 0
and LF = 0 have no common solutions other than F = 0), the formal solution of
the minimum problem can be shown to be (Hansen, 1992)

F̄λ = (A∗A + λL∗L)−1A∗, (11)

where A∗ is adjoint of an operator A. From the point of view of applications, this
formula is not helpful since truncation errors imply a notable loss of information in
forming the cross-product matrix A∗A and, furthermore, the computational effort
required is significant. Computational heaviness, together with the presence of
local minima, affect also the use of quadratic programming for convex functional
minimization, which is a typical strategy for computing the solution of (8). A more
effective approach is to use the Generalized Singular Value Decomposition (GSVD)
algorithm. Following van Loan (1976), we consider an M×N matrix A and a P×N
matrix L (M ≥ N ≥ P). Then for each pair of real matrices (A, L)

A ∈ R
M×N , L ∈ R

P×N , (12)

it can be shown that there exists a set of singular values σ A
k , σ L

k satisfying the
relation (σ A

k )2 + (σ L
k )2 = 1, and singular vectors ũk, ṽk, w̃k , where the first two sets

are orthogonal and the third one is a set of linearly independent vectors satisfying
the simultaneous equations

A = Ũ




diag(σ A
k ), 0

0 1N−P

0 0


 W̃−1, L = Ṽ(diag(σ L ) 0)W̃−1. (13)
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Here the M × M matrix Ũ is formed from the M column vectors ũk, k = 1, . . . , M ,
with similar definitions for the P × P matrix Ṽ and the N × N matrix W̃. The
generalized singular values are defined as the ratios σk = σ A

k /σ L
k .

The solution to this generalized minimization problem (8) can be shown to be
(Hansen, 1992)

F̄λ =
P∑

k=1

(
σ 2

k

σ 2
k + λ

(g · ũk)

σ A
k

)
w̃k +

N∑
k=P+1

(g · ũk)w̃k . (14)

In the particular case when L = 1 (zero-order regularization), P = N and Equa-
tion (13) shows that ũk = uk, ṽk = vk . Hence the second term in the solution (14)
vanishes identically and the first term reduces to the one for the zero-order regular-
ized solution.

5. Choice of the Regularization Parameter

It has to be recalled that the choice of the regularization parameter λ, and indeed
of L, has to be made independently of the equation and of the data, using prior
knowledge or prejudice, since there is no unique solution to the Equation (5) it-
self. As mentioned, the integral properties of the electron flux (7), if they were
known, would unambiguously determine the Lagrange multiplier λ in our prob-
lem (8). Unfortunately, we do not know a priori the total flux of X-ray producing
electrons or other integral quantity. Therefore it is advantageous to use knowl-
edge of the errors in the recovered solution to choose the regularization param-
eter. Several criteria for determining the optimal λ in Equation (14) have been
introduced. A general property of them is that the optimal λ tends to zero when
the noise level tends to zero. For example, according to the discrepancy princi-
ple (Tikhonov et al., 1995), the best value of λ is given by the solution of the
equation

‖AF̄λ − g‖2 = ‖δg‖2, (15)

where δg is some measure of the noise affecting the data (essentially, typically the
canonical norm of the error vector). The discrepancy principle is typically rather
robust in that it yields stable values but empirical tests show that the parameter
it provides is often too large, and the corresponding regularized solution over-
smoothed.

Here, we propose a procedure for the choice of the regularization parameter
based on the analysis of the residuals rk = ((AF̄)k − gk)/δgk . Then the deviation
weighted by the error

‖(AF̄λ − g)(δg)−1‖2 � 1 (16)
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accounts more accurately for point-to-point error variation than (15). Indeed, λ

defined by Equation (16) has accounted for detailed structure of errors, while the
discrepancy principle uses only total error.

Ideally, the normalized residuals should be consistent with statistical deviations
in the data, and should therefore form a Gaussian distribution with zero mean; the
cumulative normalized residual

C j = 1

j

j∑
k=1

rk (17)

should be mostly within ±1/
√

j . A too-small set of values for the cumulative
residuals indicates insufficient smoothing, whereas a set of values that consistently
exceed ±1/

√
j (especially if the sign of the residuals cluster) indicates too great a

regularizing parameter. Therefore, we start with the value of λ given by (16) and
then reduce λ until the average residual in the photon spectrum over the energy
range from ε1 to ε j as a function of j is mostly within the ±σ limits expected if the
residuals were purely statistical, drawn from a normal distribution. This technique
is similar to requiring χ2 � 1 in hypothesis testing situations.

6. Analysis of the Solution Structure

A key issue in achieving the most meaningful construction of a regularized solution
lies in analysis of the quantities

ck =
∣∣∣∣ (σk)2

(σk)2 + λ

(g · ũk)

σ A
k

∣∣∣∣ k = 1, . . . , N (18)

i.e., the absolute value of the coefficients which multiply the singular vectors vk in
the solution (14). To obtain a meaningful solution represented by Equation (14) the
singular values σk should decrease faster on average than the coefficients (g, uk)
(the Picard condition; Groetsch, 1984). Figure 1 shows a typical behavior of the
coefficients ck .

The first singular vector is always either positive or negative definite (so
that c1w̃1 is always positive), while the w̃k always have oscillatory behavior for
k > 1. Therefore, for sufficiently small regularization parameters λ, the regularized
solution may exhibit negative values when the coefficients ck are not decreasing
fast enough, so that relatively large values of the regularization parameter λ are
necessary to guarantee a positive definite solution.

Inasmuch as typical solar flare hard X-ray spectra are sufficiently steep, it is
advantageous to transform the fundamental problem (1) (or, equivalently, (8)) to a
form in which the ck are decreasing faster with k, so that smaller values of λ, which
preserve more fidelity in the recovered solution, can be used. This will also avoid
errors connected with finite precision arithmetics in machine calculations.



GENERALIZED REGULARIZATION TECHNIQUES WITH CONSTRAINTS 301

Figure 1. Variation of the coefficients ck in Equation (18) as a function of the vector number k for
the simulated data set with δ = 2.

Two strategies can be followed to overcome this difficulty. In the first one,
instead of considering Equation (3) we consider the new linear system

AδF̄ = δg (19)

with

δF̄ = F̄ − F̄∗, δg = g − AF̄∗, (20)

where F̄∗ is an adopted form (often, but not necessarily, a closed parametric expres-
sion) for F̄. Now δg represents the deviations from the reference spectrum. Hence,
if this reference spectrum is chosen appropriately (say from a forward-fit solution
– e.g., Holman et al., 2003), then these deviations δF̄ vary around zero, and the
function δg will be significantly flatter than g, so that the behavior of the ck becomes
more monotonic.

In addition to facilitating the calculation of a smooth (but not unnecessarily over-
smoothed) solution of the minimization problem, the quantity δF̄ is interesting in its
own right. It represents the deviation of the actual electron spectrum F̄(E) from the
assumed reference spectrum F̄∗(E) and hence is an “adjustment” to this assumed
(e.g., forward-fitted) form. This “initial guess” approach is the one adopted in the
present paper.

A second possible strategy to constrain the behavior of the ck is to consider the
change of variables,

g(εi ) → ε
p
i g(εi ), F̄(E j ) → Eq

j F̄(E j ), Ai j → ε
p
i

Eq
j

Ai j , (21)

with p, q positive real numbers. Then the basic form of the solution (14) is unaltered,
but the forms of the matrix and its associated singular system are altered which
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leads to modified behavior of the coefficients ck . If a scaling (21) can be found that
makes the ck decreasing functions of k, then this transformed solution will have
more desirable properties. We have found through experimentation that a judicious
choice of scaling is p = q = (γ − 1)/2, where γ is the best-fit power-law spectral
index to the array of g values. For all values of γ (from 2 to ∼ 20), this scaling drives
the coefficients ck toward a rapidly decreasing form. Note that while re-scaling with
p = γ produces a much flatter data function g, such a steeper scaling concomitantly
leads (Equation (21)) to the matrix A becoming less diagonal, thereby increasing
the ill-conditioning of the system and hence the rate of decay of the σk with k.
The choice p = (γ − 1)/2 hence lies at the “middle ground” between steepness
of the input data vector and ill-conditioning of the transformation matrix; similar
arguments apply to the choice of q.

It should also be noted that “rescaling” is equivalent to constructing the ratio
(rather than the difference) of F̄(E) relative to a reference F̄∗(E) form.

7. Application of the Algorithm to Simulated Data

In this section we explore the application of the above techniques to simulated data,
in order to demonstrate some of the effects of various features.

7.1. NON-SQUARE MATRIX

To demonstrate the benefits of using a non-square A extending to higher electron
energies than the highest observed photon energy, we assumed an actual F̄(E) of
the form F̄(E) ∼ E−δ, 10 < E < Emax, with δ = 2 and Emax = 300, 400, 500 keV.
We then used Equation (1) and the electron-proton bremsstrahlung cross-section
from Haug (1997) to calculate the photon spectrum I (ε), in the range 10 ≤ ε ≤
200 keV, from each electron spectrum. (It should be noted that the upper limit to
the “observed” photon spectrum is in all cases less than the upper-energy cutoff
in the electron spectrum.) Figure 6 shows the calculated photon spectra and the
corresponding local spectral index γ = −d log I (ε)/d log ε. At low energies, the
spectrum is well represented by a power-law form with γ = δ + 1 = 3, but even at
energies as low as ∼50 keV, the deviation from a power-law behavior induced by
the upper-energy cutoff in F̄(E) is already evident. For the case Emax = 300 keV,
by ε = 100 keV the spectrum has steepened from its low-energy form (∼ε−3)
sufficiently that the spectral index has increased by as much as 0.5.

Such a deviation in local hard X-ray spectral index γ is clear evidence for a
significant deviation from the power-law behavior of the generating F̄(E) spec-
trum at higher energies, although the exact nature of this high-energy deviation
is not immediately obvious from the form of the photon spectrum (or even from
a γ (ε) plot). We therefore now explore the ability of our technique to uncover
the actual nature of this deviation (namely, in this case the upper energy cutoff
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at E = Emax). We performed a regularized inversion of the photon spectra of
Figure 6 by using solution (14) under the following conditions: zero order reg-
ularization; the simulated photon “data” used covered the range 10 < ε < 200 keV
and the electron upper energy limits Eupper used in the inversion were 400, 500, and
600 keV.

In all cases the recovered electron spectra quite faithfully reproduce the actual
high-energy cutoffs Emax = 300 keV (Figure 2). The higher energy cut-off is seen
as substantial steepening in the reconstructed spectra. However, we should note

Figure 2. Mean source electron spectra F̄(E) recovered from the photon spectrum I (ε; Emax =
300 keV) (dot-dashed spectrum in Figure 6), using the GSVD technique and zero order regularization
with photon “data” in the range 10 < ε < 150 keV and electron energy ranges 10 keV < E <

Eupper, where Eupper = 400 keV (dot-dashed curve), 500 keV (dashed curve) and 600 keV (dotted
curve). The reference spectrum (Equation [20]) was of the form F̄∗(E) ∼ Eγ∗ . Note that the high-
energy behavior of F̄(E) (in particular the high-energy cutoff at Emax = 300 keV) is quite faithfully
reproduced.
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somewhat obvious limitations: if the true spectra has some variations above the
range we are given, the reconstructed solution does not display these features due
to the lack of information given (Figure 3).

7.2. HIGHER-ORDER REGULARIZATION WITH GSVD

To illustrate the benefits of GSVD and higher-order regularization we consider the
reconstruction of an electron spectrum which is the superposition of a power-
law plus an oscillatory trigonometric function. In this case, the use of a first-
order penalty term governed by L ∼ D1 is more effective than the zero-order

Figure 3. Reconstruction from simulated data. Upper panel: the simulated photon spectrum; bottom
panel: the reconstruction obtained by using first order regularization. The dotted line shows the input
electron spectrum and solid lines presents 30 realizations of the solution with the data randomly
perturbed within error bars.
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regularization algorithm, since the bound on the first derivative of the regular-
ized solution assures a sufficiently correct behavior (in terms of residuals) of the
solution. In Figure 4 (upper panel) the simulated photon spectrum is obtained by
inserting the theoretical electron spectrum into Equation (3) while Figure 4 (lower
panel) shows the reconstruction obtained by using formula (14) when L ∼ D1 and λ

is chosen by using the cumulative residuals analysis criterion (in this figure we also
superimposed the theoretical electron spectrum in order to point out the reliability
of our approach). In Figure 5 (upper panel) and Figure 5 (lower panel) the behavior
of the normalized and cumulative residuals shows that the fitting performance of
the regularized solution is extremely accurate in the range below 150 keV.

Figure 4. Reconstruction from simulated data. Upper panel: normalized residuals; bottom panel:
normalized cumulative residuals.
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Figure 5. Reconstruction from simulated data. Recovered mean flux F̄(E) (upper panel) and re-
covered injected flux F0(E0) (lower panel) given by Equation (10). The dotted lines show the true
solution, while three various orders of regularization are shown: second order regularization (solid
line), first order (dashed line), zero (dash-dot).

The importance of higher-order regularization using GSVD also becomes ex-
plicit when one wants to derive the injected electron distribution F0(E0). Figure 5
shows both the mean source and injected electron spectra obtained using different
orders of regularization, compared with their true forms. As a true form of F0(E0)
we took a power law with a bump simulated by exponent as can be seen in Figure 5.
The simulated photon spectrum is obtained by inserting the theoretical electron
spectrum with the high energy cut-off at 300 keV into Equation (3) and 5% noise
has been added. The reconstructed spectra and input spectra are shown in Figure 5.
Note, that in the reconstruction we used data only up to 150 keV.
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Figure 6. Upper panel: Simulated mean source electron spectrum F̄(E), which has the form of
a power-law (index δ = 2), with three different upper energy cutoffs Emax. Middle panel: Cor-
responding photon spectra I (ε) for each of the F̄(E) forms. Lower panel: Local spectral index
γ = d log I (ε)/d log ε for each photon spectrum. Note the evidence for the high-energy cutoff in the
hard X-ray spectrum and its local spectral index at much lower energies than Emax. The vertical lines
at ε = 200 keV represent the upper energy limit of the spectral data used for subsequent analysis.

The second-order regularized solution shows the closest solution for F0(E0) in
Equation (5). On the other hand first- and zero-order regularizations show results
with smaller χ2 in recovering the spatially integrated spectra (5). Indeed, second-
and first-order regularization preserves information on small scale (closer reproduc-
tion of a hump in F0(E0) around 30 keV), while zero-order regularization is better
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in global properties of the solution. The first- and zero order regularization show
lack of sufficient smoothness that is displayed in oscillations in F0(E0) (Figure 5).
The main deviations from the true solutions are observed above 200 keV, where
we have only approximate solution and near low energy cut-off due to boundary
effects.

8. Conclusions

In the paper, we have summarized the essential mathematics associated with ap-
plication of an Generalized Singular Value Decomposition (GSVD) technique to
the solution of Volterra integral equations arising in solar X-ray spectroscopy, and
in particular to the inference of mean source electron spectra F̄(E) and injected
(accelerated) electron spectrum F0(E0) from observations of solar flare hard X-ray
spectra I (ε). Judicious use of this methodology can recover forms of F̄(E) that are
not only relatively free from the effects of data noise amplification, but which also
recover features that are not realizable using more traditional (e.g., forward-fitting)
methods. Further, they can reveal approximate behavior in the electron spectrum
well above the range of photon energies observed.

In the companion paper (Paper II) we will make use of these techniques in the
analysis of high-resolution solar flare spectra observed by RHESSI.
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