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1 Plasma descriptions and plasma particle motion
PTD II course main topics:

To introduce students to the plasma processes in astrophysical plasma:

• Orbit theory: single particle motion, gyration, drifts

• Radiation by an accelerated charge: Larmor formula, cyclotron and 

synchrotron emission

• Diffusion and resistivity: collisions in plasma, collision rate, diffusion

• Plasma kinetics: kinetic equations, Langmuir waves and Landau dump-

ing

Astronomy 345: Plama Theory and Diagnostics II
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1.1 Recommended literature and useful resources

Introduction to plasma physics and controlled fusion. Volume 1, Plasma 

physics by Francis F. Chen (2006) [GU Library link] [Amazon Link]

and some elements from these books:

High Energy Astrophysics (Volume 1 and 2) by Malcolm S. Longair [GU library 

link] [Amazon Link]

The Classical Theory of Fields: Volume 2 (Course of Theoretical Physics) by 

Landau and Lifshitz [GU library] [Amazon Link]

Physical Kinetics: Volume 10 (Course of Theoretical Physics) by Pitaevskii 

and Lifshitz [GU library] [Amazon Link]

Some useful on-line books:

Astrophysical Plasmas -Online Book by Steven J Schwartz, David Burgess, and 

Chris Owen

Plasma Physics - online book by Richard Fitzpatrick
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http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb1192245__SIntroduction%20to%20plasma%20physics%20and%20controlled%20fusion.%20%20Francis%20F.%20Chen__Orightresult__U__X2?lang=eng&suite=cobalt
http://www.amazon.com/Introduction-plasma-physics-controlled-fusion/dp/0306413329
http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb2868518__SHigh%20Energy%20Astrophysics__P0%2C1__Orightresult__U__X7?lang=eng&suite=cobalt
http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb2868518__SHigh%20Energy%20Astrophysics__P0%2C1__Orightresult__U__X7?lang=eng&suite=cobalt
http://www.amazon.com/High-Energy-Astrophysics-Particles-Detection/dp/0521387736
http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb1016072__SThe%20Classical%20Theory%20of%20Fields__P0%2C1__Orightresult__U__X7?lang=eng&suite=cobalt
http://www.amazon.com/Classical-Theory-Fields-Fourth-Edition/dp/0750627689
http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb1099923__SPhysical%20Kinetics__Orightresult__U__X7?lang=eng&suite=cobalt
http://www.amazon.com/Physical-Kinetics-Volume-Theoretical-Physics/dp/0750626356
http://www.sp.ph.ic.ac.uk/~sjs/APmaster.pdf
http://farside.ph.utexas.edu/teaching/plasma/plasma.html
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1.2 Description of plasmas

Following  Langmuir, (1923) we call plasma a fully ionized gas. However, 

nowadays this term became more broader and any media with charged 

particles can be called a plasma.

Generally a system of 𝑁 charged particles can be formally described by the 

system of 𝑁 equations of motion:

𝑑𝐩⃗𝑖
𝑑𝑡 = 𝐅⃗(𝐩⃗1, ..., 𝐩⃗𝑁; ⃗𝐫1, ..., ⃗𝐫𝑁) (1.1)

where 𝐅⃗(𝐩⃗1, ..., 𝐩⃗𝑁; ⃗𝐫1, ..., ⃗𝐫𝑁) is the total force acting on 𝑖-th particle, ⃗𝐫𝑖, 𝐩⃗𝑖
are position and momentum of 𝑖-th particle. Note that 𝐅⃗ depends on the 

positions and velocities of 𝑁 − 1 particles.

However, as soon as 𝑁 ≫ 1 (e.g. 𝑁 ∼ 1023 in one mole of gas !), the solution 

of the system of 2-nd order differential equations is prohibitively difficult to 

find and alternative methods of description should be involved.

Astronomy 345: Plama Theory and Diagnostics II
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1.3 There are different types of plasma description

• Test particles: solution of equations of motion for 𝑀 ≪ 𝑁 particles 

assuming some prescribed force 𝐅⃗( ⃗𝐫, 𝑡), e.g. Lorentz force given by 

fields 𝐄⃗( ⃗𝐫, 𝑡), 𝐁⃗( ⃗𝐫, 𝑡).

• Fluid description of plasma (MHD) when plasma is assumed to be a 

continues media at 𝐿 >> 𝑙, where 𝐿 scale of plasma processes, and 

𝑙 is the mean free path of a particle in a plasma. The plasma fluid is 

characterised by macroscopic parameters, e.g. density 𝜌( ⃗𝐫, 𝑡), fluid 

velocity 𝐮⃗( ⃗𝐫, 𝑡), pressure 𝑝( ⃗𝐫, 𝑡), etc

• Kinetic theory introducing statistical tool to deal with plasma; Particles 

are described in terms of particle distribution functions 𝑓𝑖,𝑒(𝐩⃗, ⃗𝐫, 𝑡)

Astronomy 345: Plama Theory and Diagnostics II
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1.4 Introduction to particle orbit theory

Figure 1.1:  Solar radio emission 
and energetic electrons near the 
Earth Krucker et al, 2007

When the number of particles of interest is 

small, only single-particle trajectories need 

to be considered, (i.e. collective effects are 

unimportant). The equation of motion for a 

non-relativistic particle:

𝑚𝑑𝐯⃗𝑑𝑡 = 𝑞𝐄⃗ + 𝑞𝐯⃗ × 𝐁⃗

where 𝑚 is the mass of the particle, 𝑞 is the 

charge. 𝐄⃗ and 𝐁⃗ are assumed to be given 

and not affected by the particles (e.g. small 

number of energetic particles from the Sun, 

see Figure 1.1).
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1.5 Constant magnetic field

Particle motion in a constant magnetic field 𝐁⃗ and 𝐄⃗ = 0. In the absence 

of an electric field, motion (non-relativistic) of a single particle of charge 𝑞, 
mass 𝑚, in a magnetic field 𝐁⃗ is given by:

𝑚𝑑𝐯⃗𝑑𝑡 = 𝑞𝐯⃗ × 𝐁⃗ (1.2)

We can demonstrate that no work is done on the particle by 𝐁⃗, and therefore 

that its kinetic energy remains constant. Indeed, multiplying both parts of 

Equation (1.2) by 𝐯⃗:

𝑚𝐯⃗ ⋅ 𝑑𝐯⃗𝑑𝑡 =
𝑑
𝑑𝑡 (𝑚𝐯⃗

2

2 )
⏟⎵⏟⎵⏟

kinetic energy

= 𝑞𝐯⃗ ⋅ (𝐯⃗ × 𝐁⃗) = 0 (1.3)

where the RHS of (1.3) is zero because 𝐯⃗ ⟂ (𝐯⃗ × 𝐁⃗).

Hence the particle’s kinetic energy remains constant.

Astronomy 345: Plama Theory and Diagnostics II
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1.6 Parallel and perpendicular motion

The particle’s motion can be split into components parallel 

and perpendicular to 𝐁⃗. Take 𝐁⃗ to be in the direction so 

that 𝐁⃗ = 𝐵𝐞𝐳 (𝐞𝐳 is a unit vector.) Recall that

𝐯⃗ × 𝐁⃗ =
|||||

𝐞⃗𝑥 𝐞⃗𝑦 𝐞⃗𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
0 0 𝐵

|||||
= 𝐞⃗𝑥(𝑣𝑦𝐵 − 0) − 𝐞⃗𝑦(𝑣𝑥𝐵 − 0)

Since 𝐯⃗ × 𝐁⃗ has no component parallel to 𝐁⃗ we have

𝑑𝑣𝑧
𝑑𝑡 = 0 =

𝑑𝑣∥
𝑑𝑡 (1.4)

Looking at the 𝑥 and 𝑦 components of (1.2) we can write

𝑑𝑣𝑥
𝑑𝑡 =

𝑞
𝑚𝐵𝑣𝑦 (1.5)

Astronomy 345: Plama Theory and Diagnostics II
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𝑑𝑣𝑦
𝑑𝑡 = −

𝑞
𝑚𝐵𝑣𝑥 (1.6)

Note: These two equations (1.5,1.6) can also be combined into:

𝑑𝐯⃗⟂
𝑑𝑡 =

𝑞
𝑚𝐯⃗⟂ × 𝐁⃗ , (1.7)

where 𝐯⃗⟂ is the velocity perpendicular to the magnetic field 𝐁⃗.

Astronomy 345: Plama Theory and Diagnostics II
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1.7 Gyro-motion and gyro-frequency

We solve the Equation (1.5-1.6) by first of all taking the time derivative from 

both parts of Equations (1.5, 1.6):

𝑑2𝑣𝑥
𝑑𝑡2 =

𝑞
𝑚𝐵

𝑑𝑣𝑦
𝑑𝑡 = −(

𝑞𝐵
𝑚 )

2
𝑣𝑥 (1.8)

𝑑2𝑣𝑦
𝑑𝑡2 = −

𝑞
𝑚𝐵

𝑑𝑣𝑥
𝑑𝑡 = −(

𝑞𝐵
𝑚 )

2
𝑣𝑦 (1.9)

Astronomy 345: Plama Theory and Diagnostics II
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Equations (1.8,1.9) describe simple harmonic motion at the cyclotron 

angular frequency 𝜔𝑐

Cyclotron or (Gyro-) frequency: 𝜔𝑐 ≡
|𝑞|𝐵
𝑚 (1.10)

𝜔𝑐𝑒 =
𝑒𝐵
𝑚𝑒

 is the electron cyclotron frequency and 𝜔𝑐𝑝 =
𝑒𝐵
𝑚𝑝

 is the proton 

cyclotron frequency, 𝜔𝑐𝑒 ≫ 𝜔𝑐𝑝 since 𝑚𝑒 ≪ 𝑚𝑝.

Astronomy 345: Plama Theory and Diagnostics II
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1.8 Solution for equation of motion in constant B-field

Solutions of Equation (1.8,1.9) are real parts of

𝑣𝑥 = 𝑣0𝑥𝑒±𝑖(𝜔𝑐𝑡+𝜑𝑥) and 𝑣𝑦 = 𝑣0𝑦𝑒±𝑖(𝜔𝑐𝑡+𝜑𝑦) (1.11)

where ± refers to the sign of the charge 𝑞/|𝑞|. The constants 𝑣𝑜𝑥, 𝑣𝑜𝑦, 𝜑𝑥, 
𝜑𝑦 are determined using initial conditions. Consider 𝑣𝑥(𝑡 = 0) = 𝑣0 then 

𝜑𝑥 = 0 and

𝑣𝑥 = 𝑣0𝑒±𝑖𝜔𝑐𝑡

Using Equation (1.5) ̇𝑣𝑥 =
𝑞
𝑚
𝐵𝑣𝑦, or 𝑣𝑦 =

𝑚
𝑞𝐵

̇𝑣𝑥, we have

𝑣𝑦 = ±
𝑚𝑣0
𝑞𝐵 𝑖𝜔𝑐𝑒±𝑖𝜔𝑐𝑡

Taking real parts of 𝑣𝑥 and 𝑣𝑦, we find

𝑣𝑥 = 𝑣0 cos𝜔𝑐𝑡 and 𝑣𝑦 = ∓𝑣0 sin𝜔𝑐𝑡 (1.12)

Astronomy 345: Plama Theory and Diagnostics II
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Forming the product 𝑣2⟂ = 𝑣2𝑥 + 𝑣2𝑦 = 𝑣20(cos2 𝜔𝑐𝑡 + sin2 𝜔𝑐𝑡) = 𝑣20 gives 

𝑣⟂ = 𝑣0. Velocity components (𝑣𝑥,𝑣𝑦) describe gyromotion around the 

𝑧-axis at angular frequency 𝜔𝑐 (see Fig 1.3).

The orbit is found by integrating (1.12) with respect to time, so we have

𝑥 = 𝑣⟂
𝜔𝑐

sin𝜔𝑐𝑡 + 𝑥0 and 𝑦 = ±𝑣⟂𝜔𝑐
cos𝜔𝑐𝑡 + 𝑦0 (1.13)

The radius of this orbit, called Larmor radius, is

Larmour or (Gyro-) radius 𝑟𝐿 ≡
𝑣⟂
𝜔𝑐

= 𝑚𝑣⟂
|𝑞|𝐵 (1.14)

Meanwhile, there is a uniform component of velocity along 𝐁⃗ , which leads 

to uniform guiding centre motion along 𝐁⃗ (see Fig 1.3):

𝑑𝑣𝑧
𝑑𝑡 =

𝑑𝑣∥
𝑑𝑡 = 0 ⇒ 𝑣𝑧 = 𝑣∥ = const ⇒ 𝑧 = 𝑣0𝑧𝑡 + 𝑧0 (1.15)

Astronomy 345: Plama Theory and Diagnostics II
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1.9 Typical gyro-frequency and Larmor radius

Electron cyclotron frequency 𝑓𝑐𝑒 is:

𝑓𝑐𝑒 =
𝜔𝑐𝑒
2𝜋 ≃ 2.8 ( 𝐵

1Gauss) [MHz] ,

where 1 Gauss= 10−4 Tesla.

For plasma particles we can also assume 𝑣⟂ ≃ √𝑘𝐵𝑇/𝑚𝑒,𝑝 and 𝑇𝑒 = 𝑇𝑝:

𝑣𝑇𝑒 = √𝑘𝐵𝑇/𝑚𝑒 ≃ 3.8 × 106 ( 𝑇
1𝑀𝐾)

1/2
, m/s

Solar corona (active region): 𝑇 ∼ 106 K, 𝐵 ∼ 100 Gauss, hence we have 

𝑓𝑐𝑒 ≃ 280 MHz, 𝑟𝐿𝑒 = 𝑣⟂/𝜔𝑐𝑒 ≃ 2.2 × 10−3 m, 𝑟𝐿𝑝 ≃ 43𝑟𝐿𝑒 ≃ 9 × 10−2 m.

Solar wind: 𝑇 ∼ 106 K, 𝐵 ∼ 5 × 10−9 Tesla, hence we have 𝑓𝑐𝑒 ≃ 140 Hz, 

𝑟𝐿𝑒 = 𝑣⟂/𝜔𝑐𝑒 ≃ 4.4 × 103 m, 𝑟𝐿𝑝 ≃ 43𝑟𝐿𝑒 ≃ 1.9 × 105 m.

Astronomy 345: Plama Theory and Diagnostics II
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Galaxy clusters: 𝑇 ∼ 107 K, 𝐵 ∼ 10−6 Gauss, , hence we have 𝑟𝐿𝑒 = 𝑣⟂/𝜔𝑐𝑒 ≃
7 × 105 m, 𝑟𝐿𝑝 ≃ 43𝑟𝐿𝑒 ≃ 3 × 107 m.

Figure 1.2: Motion of a charge in constant 𝐁⃗ field. Animation available from NASA 
Scientific Visualization Studio

Astronomy 345: Plama Theory and Diagnostics II
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1.10 Electron and ion motions in uniform 𝐁⃗

Figure 1.3:  Charge motion in 
uniform and constant 𝐁⃗

The trajectory of a charged particle in space is in 

general a helix: a circular orbit (Eq 1.13) about 

a guiding centre (𝑥0, 𝑦0) which is moving along 

𝑧 with 𝑣0𝑧 (Eq 1.4). However, in other cases, 

the guiding centre can drift in a direction per-

pendicular to 𝐁⃗. Ion Larmor radius 𝑟𝐿𝑖 ≫ 𝑟𝐿𝑒
since 𝑚𝑖 ≫ 𝑚𝑒. The direction of gyration is such 

that the magnetic field generated by the charged 

particles is opposite to the externally imposed 

field 𝐁⃗. Hence, it reduces 𝐵 and plasma is dia-

magnetic. Note that this is the simplest case of 

charged particle motion, in a uniform constant 

B-field, with zero electric field. In practise such configurations do not occur 

in the natural world, and are hard to fabricate in the lab.

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 2 Uniform, static magnetic and electric fields 18

2 Uniform, static magnetic and electric fields

LECTURE OUTLINE

• Charge motion in uniform magnetic and electric fields

• Particle acceleration by parallel electric field

• 𝐄⃗ × 𝐁⃗ drift

• Parallel and perpendicular charge motion

Astronomy 345: Plama Theory and Diagnostics II
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2.1 Non-zero electric field

When 𝐄⃗ ≠ 0 and 𝐁⃗ ≠ 0, the equation of motion is :

𝑚𝑑𝐯⃗𝑑𝑡 = 𝑞𝐄⃗ + 𝑞𝐯⃗ × 𝐁⃗ (2.1)

Taking the dot (scalar) product with 𝐯⃗, as before we have

𝑚𝐯⃗ ⋅ 𝑑𝐯⃗𝑑𝑡 =
𝑑
𝑑𝑡 (

𝑚𝑣2
2 ) = 𝑞𝐯⃗ ⋅ 𝐄⃗ (2.2)

The electric field can be presented as a gradient of a potential, 𝐄⃗ = −∇𝜙, 
giving, since 𝜕𝜙/𝜕𝑡 = 0

𝑑
𝑑𝑡 (

𝑚𝑣2
2 ) = −𝑞𝐯⃗ ⋅ ∇𝜙 = −𝑞𝑑 ⃗𝐫

𝑑𝑡 ⋅
𝜕𝜙
𝜕 ⃗𝐫

= −𝑞
𝑑𝜙
𝑑𝑡

Rewriting, we have:
𝑑
𝑑𝑡 (

𝑚𝑣2
2 + 𝑞𝜙) = 0

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 2 Uniform, static magnetic and electric fields 20

Hence, the sum of the particle’s kinetic and potential energies remains con-

stant in the presence of uniform, constant 𝐄⃗ and 𝐁⃗.

An electric field does work on the charged particle:

• 𝐄⃗∥, the component of electric field parallel to 𝐁⃗ results in acceleration 

of the particle along 𝐁⃗

• 𝐄⃗⟂, the component of electric field perpendicular to 𝐁⃗ results in the 

drift of a particle (drift of the gyro-centre) acceleration across magnetic 

field lines.

Note, to maintain an electric field parallel to the magnetic field requires 

external work to be done, since the conductivity is high and the electrons 

can move easily along the field to maintain neutrality. For example, 𝐄⃗∥ has 

been measured in the Earth’s ionosphere (e.g. Ergun et al, 2005), where it 

is thought to be responsible for auroral particle acceleration (see Fig 2.1); 

Astronomy 345: Plama Theory and Diagnostics II
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pulsar magnetosphere (see Fig 2.2); electron acceleration by parallel electric 

fields during magnetic reconnection (e.g. Egedal et al, 2012)

Figure 2.1: Artistic view 
of electrons, responsible 
for aurora, spiralling down 
magnetic field lines. The 
U-shaped potential struc-
ture illustrates the region 
where electrons get accel-
erated on their way down 
to the upper atmosphere 
where they collide with neu-
tral atoms and molecules, 
which in turn produce the 
aurora light show. from 
ESA webpage

Astronomy 345: Plama Theory and Diagnostics II
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2.2 Example: Electric field in pulsar magnetosphere

Figure 2.2: A sketch of pulsar 
magnetosphere. Particles are ac-
celerated along the magnetic field 
lines (e.g. in the polar cap region) 
and emit electromagnetic radiation 
via the synchrotron-curvature mech-
anism. from MAGIC Collaboration

Astronomy 345: Plama Theory and Diagnostics II
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2.3 Electric field acceleration

Consider 𝐁⃗ = 𝐵𝐞𝐳 and 𝐄⃗ = (𝐸𝑥, 0, 𝐸𝑧), i.e. 𝐄⃗ has a component parallel and 

perpendicular to 𝐁⃗.

Looking at components of (2.1) we have in cartesian coordinates:

𝑚𝑑𝑣𝑧𝑑𝑡 = 𝑞𝐸𝑧 + 0

𝑚
𝑑𝑣𝑥
𝑑𝑡 = 𝑞𝐸𝑥 + 𝑞𝐵𝑣𝑦 (2.3)

𝑚
𝑑𝑣𝑦
𝑑𝑡 = 0 − 𝑞𝐵𝑣𝑥

The first equation corresponds to acceleration along the magnetic field di-

rection and one finds:

𝑣𝑧(𝑡) = 𝑣0𝑧 +
𝑞𝐸∥𝑡
𝑚

Astronomy 345: Plama Theory and Diagnostics II
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Differentiating the equations (2.3) for 𝑣𝑥, 𝑣𝑦, one finds for constant 𝐄⃗

̈𝑣𝑥 = −𝜔2𝑐𝑣𝑥 (2.4)

̈𝑣𝑦 = −
𝑞𝐵
𝑚 ̇𝑣𝑥 = −

𝑞𝐵
𝑚 (

𝑞
𝑚𝐸𝑥 +

𝑞𝐵
𝑚 𝑣𝑦) (2.5)

Rewriting (2.5), we have

̈𝑣𝑦 = −𝜔2𝑐 (
𝐸𝑥
𝐵 + 𝑣𝑦) ⇒ 𝑑2

𝑑𝑡2 (
𝐸𝑥
𝐵 + 𝑣𝑦) = −𝜔2𝑐 (

𝐸𝑥
𝐵 + 𝑣𝑦)

oscillations for 𝐸𝑥/𝐵 + 𝑣𝑦.

Similar to (1.11), the solution of Equation (2.4,2.5) with initial condition 

𝑣𝑥(𝑡 = 0) = 𝑣⟂ is

𝑣𝑥 =𝑣⟂𝑒±𝑖𝜔𝑐𝑡

𝑣𝑦 = ± 𝑖𝑣⟂𝑒±𝑖𝜔𝑐𝑡 −
𝐸𝑥
𝐵
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Hence, the Larmor mo-

tion is the same as for 

𝐄⃗ = 0, but there is a 

drift of the guiding cen-

tre in the −𝐞𝐲 direction 

for 𝐸𝑥 > 0.

The drift appears in perpendicular direction, because when proton moves in 

the direction of 𝐄⃗ then 𝐯⃗⟂ increases, so 𝑟𝐿 increases. When proton moves 

anti-parallel to 𝐄⃗ then 𝐯⃗⟂ and 𝑟𝐿 both decrease. Hence, gyro-orbits are 

therefore not closed circles; instead the guiding centre drifts in 𝑦-direction.
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2.4 ExB drift velocity

To obtain a general formula for the velocity of the guiding centre, we start 

with equation of motion

𝑚𝑑𝐯⃗𝑑𝑡 = 𝑞𝐄⃗ + 𝑞𝐯⃗ × 𝐁⃗

and take a cross product with 𝐁⃗

𝑚𝐁⃗ × 𝑑𝐯⃗
𝑑𝑡 = 𝑞𝐁⃗ × 𝐄⃗ + 𝑞𝐁⃗ × (𝐯⃗ × 𝐁⃗)

Since we are interested in the drift with constant speed, i.e. ̇𝐯⃗ = 0, then:

0 = 𝐁⃗ × 𝐄⃗ + 𝐁⃗ × (𝐯⃗ × 𝐁⃗) = 𝐁⃗ × 𝐄⃗ + 𝐯⃗𝐵2 − 𝐁⃗(𝐯⃗ ⋅ 𝐁⃗)
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Taking only transverse component of 𝐯⃗, i.e. 𝐯⃗ ⋅ 𝐁⃗ = 0, we find

𝐯⃗𝐸 =
𝐄⃗ × 𝐁⃗
𝐵2 (2.6)

which is the electric field drift or 𝐄⃗ × 𝐁⃗-drift of the guiding centre.

The drift velocity is directed perpendicular to both 𝐁⃗ and 𝐄⃗.

It is important to note that 𝐯⃗𝐸 is independent of 𝑞, 𝑚, and 𝐯⃗.
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2.5 ExB drift of electrons and ions

Figure 2.3

Let us consider why 𝐯⃗𝐸 is indepen-

dent of 𝑞, 𝑚, and 𝑣.

As the particle moves in circular orbit, 

it gains energy from 𝐄⃗ and increases 

𝐯⃗⟂, hence 𝑟𝐿 (Figure 2.3). In the sec-

ond half-cycle, it loses energy and 

decreases 𝑟𝐿. This difference in 𝑟𝐿 on 

the left and right sides of the orbit 

causes the 𝐄⃗ × 𝐁⃗ drift.

Electron gyrates in the opposite to 

ion’s direction with smaller 𝑟𝐿 and 

hence less per cycle. However, the 
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frequency 𝜔𝐿 is also larger by the same amount, so per unit of time these 

two effects exactly cancel.

Figure 2.4: Electron and proton 𝐄⃗ × 𝐁⃗ drifts. Visualisation is from NASA scientific 
visualisation studio.
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2.6 Parallel and perpendicular motion

Let us consider ∥ and ⟂ motion of a charge. We can split the motion into 

two parts

𝐯⃗ = 𝐮⃗ + 𝐯⃗𝐸 ,

where 𝐯⃗𝐸 = 𝐄⃗× 𝐁⃗/𝐵2 is the constant drift velocity of the gyro-centre. Then

𝑑𝐯⃗
𝑑𝑡 =

𝑑𝐮⃗
𝑑𝑡 +

𝑑𝐯⃗𝐸
𝑑𝑡 = 𝑑𝐮⃗

𝑑𝑡 + 0

From equation of motion (1.2), we have

𝑚𝑑𝐮⃗𝑑𝑡 = 𝑞𝐄⃗ + 𝑞𝐮⃗ × 𝐁⃗ + 𝑞𝐄⃗ × 𝐁⃗
𝐵2 × 𝐁⃗

and using (𝐄⃗ × 𝐁⃗) × 𝐁⃗ = 𝐁⃗(𝐄⃗ ⋅ 𝐁⃗) − 𝐄⃗𝐵2, the equation of motion becomes

𝑚𝑑𝐮⃗𝑑𝑡 = 𝑞𝐄⃗ + 𝑞𝐮⃗ × 𝐁⃗ + 𝑞𝐄⃗ ⋅ 𝐁⃗𝐵2 𝐁⃗ − 𝑞𝐄⃗ = 𝑞𝐮⃗ × 𝐁⃗ + 𝑞(𝐄⃗ ⋅ 𝐛⃗)𝐛⃗ ,
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where 𝐛⃗ = 𝐁⃗/𝐵.

Hence the components of 𝐮⃗ are

𝑚
𝑑𝑢∥
𝑑𝑡 =𝑞𝐸∥

𝑚𝑑𝐮⃗⟂𝑑𝑡 =𝑞𝐮⃗⟂ × 𝐁⃗

where the first equation describes evolution of 𝑢∥ and implies ∥ motion with 

uniform acceleration driven by 𝐸∥.

The second equation describes 𝐮⃗⟂ and leads to uniform circular motion ⟂ to 

magnetic field (gyro-motion).
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2.7 External force drift

The result of 𝐄⃗ drift can be applied to other forces by replacing 𝑞𝐄⃗ in the 

equation of motion by a general force 𝐅⃗:

𝑚𝑑𝐯⃗𝑑𝑡 = 𝐅⃗ + 𝑞𝐯⃗ × 𝐁⃗

Again, we have that the motion is the sum of three parts: acceleration parallel 

to 𝐁⃗, gyration perpendicular to 𝐁⃗,

and a uniform drift at velocity 𝐯⃗𝐹, with

𝐯⃗𝐹 =
1
𝑞
𝐅⃗ × 𝐁⃗
𝐵2 (2.7)

𝐯⃗𝐹-drift is perpendicular to 𝐅⃗ and 𝐁⃗, but unlike 𝐄⃗ × 𝐁⃗-drift, depends on 

the particle charge.
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2.8 Gravitational force drift

When the external force is gravity 𝐅⃗ = 𝑚𝐠⃗, we have

𝐯⃗𝑔 =
𝑚
𝑞
𝐠⃗ × 𝐁⃗
𝐵2 (2.8)

So under the influence of a gravitational force, ions and electrons drift in 

opposite directions,1 so there is a net current in such plasma.

The physical reason for this drift is again the change in Larmor radius as the 

particle gains and loses energy in the field.

1Compare to 𝐄⃗ × 𝐁⃗ drift and note the similarities and differences
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3 Non-uniform B-field

LECTURE OUTLINE

• Charge motion in non-uniform magnetic field

• Grad-B drift velocity
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3.1 Nonuniform magnetic fields

Magnetic fields are inhomogeneous (e.g. galactic Fig 3.1, solar Fig 3.2)

Figure 3.1: The image above shows an example of a spiral magnetic field of the galaxy 
NGC 4736. Chyzy & Buta 2008.
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3.2 Motion in non-uniform B-field

Figure 3.2:  Solar loops, im-
age SOHO/EIT

As soon as we introduce inhomogeneity, i.e. 𝐁⃗( ⃗𝐫), 
the problem of particle motion becomes too com-

plicated to solve exactly. To get an approximate 

answer we can use the small parameter, 𝑟𝐿/𝐿 ≪ 1, 
where 𝑟𝐿 is the Larmor radius and 𝐿 is the scale 

length of the inhomogeneity.

For example, particles in the solar corona 𝑇 ≃
2 MK, 𝐵 = 10−2 Tesla (= 100 Gauss) 𝑣𝑇𝑒 =
√𝑘𝑏𝑇/𝑚𝑒 ≃ 5 × 106 m/s, 𝑟𝐿𝑒 = 𝑣𝑇𝑒/𝜔𝑝𝑒 ≃

3×10−3 m; 𝑣𝑇𝑖 = √𝑘𝑏𝑇/𝑚𝑖 ≃ 1.3×105 m/s, 𝑟𝐿𝑖 = 𝑣𝑇𝑖/𝜔𝑝𝑒 ≃ 1.3×10−1 m; 

Hence at the scales ≫ 1.3 × 10−1 m, small Larmor radius approximation is 

applicable. Such approximation is valid in many astrophysical settings, but 

not always.
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Let us consider inhomogeneity of 𝐛⃗ and 𝐵 separately.
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3.3 Grad-B drift

Figure 3.3:  Non-uniform 𝐵

We consider the plasma with the 

change of 𝐵 (Figure 3.3), while the 

direction of 𝐁⃗ does not change and 

we also consider ∇𝐵 ⟂ 𝐁⃗.

Consider the Lorentz force

𝐅⃗ = 𝑞𝐯⃗ × 𝐁⃗

when 𝐁⃗ is constant, the force 𝐹 aver-

aged over a gyration is zero, since the 

particle spends same amount of time 

in each direction. In case of weakly 

inhomogeneous field 𝐁⃗ in Taylor se-

ries, using that the particle position 
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⃗𝐫0 + ⃗𝐫, where ⃗𝐫0 is the position of gyro-center, and ⃗𝐫 is the particle motion 

around the gyro-centre.

Let us consider 𝐁⃗ = (0, 0, 𝐵𝑧) and 𝐵𝑧 =
𝐵𝑧(𝑦). Then the force 𝑞𝐯⃗ × 𝐁⃗ = 𝐅⃗ could 

be written:

𝐯⃗×𝐁⃗ =
|||||

𝐞⃗𝑥 𝐞⃗𝑦 𝐞⃗𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
0 0 𝐵𝑧

|||||
= 𝐞⃗𝑥𝑣𝑦𝐵𝑧−𝐞⃗𝑦𝑣𝑥𝐵𝑧+0

Let us take the expansion of 𝐁⃗( ⃗𝐫0+ ⃗𝐫), 𝑟 ≪ 𝑟0
near gyrocentre ⃗𝐫0 (You can consider 𝑥, 𝑦, 𝑧 components and show that for 

vector field 𝐀⃗( ⃗𝐫0 + ⃗𝐫), we can write

𝐀⃗( ⃗𝐫0 + ⃗𝐫) = 𝐀⃗( ⃗𝐫0) + ( ⃗𝐫 ⋅ ∇)𝐀⃗( ⃗𝐫0) + … ,
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when ⃗𝐫 ≪ ⃗𝐫0):

𝐁⃗( ⃗𝐫0 + ⃗𝐫) =𝐁⃗( ⃗𝐫0) + ( ⃗𝐫 ⋅ ∇)𝐁⃗( ⃗𝐫0) + …

𝐵𝑧(𝑦0 + 𝑦) =𝐵(𝑦0) + 𝑦 𝜕𝜕𝑦𝐵𝑧 +…

then we have:

𝐹𝑥 =𝑞𝑣𝑦(𝐵0 + 𝑦𝜕𝐵𝑧𝜕𝑦 )

𝐹𝑦 = − 𝑞𝑣𝑥(𝐵0 + 𝑦𝜕𝐵𝑧𝜕𝑦 )

Now for 𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, let us take the solution for uniform 𝐵 (Equations 1.12, 

1.13)

𝑣𝑥 =𝑣⟂ cos𝜔𝑐𝑡, 𝑣𝑦 = ∓𝑣⟂ sin𝜔𝑐𝑡

𝑥 =𝑣⟂𝜔𝑐
sin𝜔𝑐𝑡, 𝑦 = ±𝑣⟂𝜔𝑐

cos𝜔𝑐𝑡
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Then

𝐹𝑥 = ∓𝑞𝑣⟂ sin𝜔𝑐𝑡 (𝐵0 ±
𝑣⟂
𝜔𝑐

cos𝜔𝑐𝑡
𝜕𝐵𝑧
𝜕𝑦 )

𝐹𝑦 = −𝑞𝑣⟂ cos𝜔𝑐𝑡 (𝐵0 ±
𝑣⟂
𝜔𝑐

cos𝜔𝑐𝑡
𝜕𝐵𝑧
𝜕𝑦 )

we seek the force averaged over gyro-period 𝑇 = 2𝜋/𝜔𝑐, i.e. ⟨𝐹𝑥⟩, ⟨𝐹𝑦⟩:

⟨𝐹𝑥⟩ ≡
1
𝑇∫

𝑇

0
𝐹𝑥𝑑𝑡

since

⟨sin𝜔𝑐𝑡⟩ = 0
⟨cos𝜔𝑐𝑡⟩ = 0

⟨cos𝜔𝑐𝑡 sin𝜔𝑐𝑡⟩ = 0

⟨cos2 𝜔𝑐𝑡⟩ =
1
2
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we can write

⟨𝐹𝑥⟩ = 0

⟨𝐹𝑦⟩ = ∓𝑞𝑣⟂
𝑣⟂
𝜔𝑐
1
2
𝜕𝐵𝑧
𝜕𝑦

Since the choice of the 𝑦-axis was arbitrary we can write

⟨𝐅⃗⟩ = ∓𝑞
𝑣2⟂
𝜔𝑐
1
2∇𝐵

Then the guiding centre drift from Equation (2.7) is

𝐯⃗∇𝐵 =
1
𝑞
⟨𝐅⃗⟩ × 𝐁⃗
𝐵2 = ∓1𝑞𝑞

𝑣2⟂
2𝜔𝑐

∇𝐵 × 𝐁⃗
𝐵2 = ±

𝑣2⟂
2𝜔𝑐

𝐁⃗ × ∇𝐵
𝐵2
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Hence

grad-B drift velocity: 𝐯⃗∇𝐵 = ±
𝑣2⟂
2𝜔𝑐

𝐁⃗ × ∇𝐵
𝐵2 (3.1)

where factor 1/2 from averaging, and ± stands for the charge sign of 

ions and electrons.

The drift velocity is directed perpen-

dicular to both 𝐁⃗ and ∇𝐵.
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3.4 Animation of charge motion and drift

Figure 3.4: Particle Drift in a Magnetic Gradient. Animation from NASA Scientific 
Visualization Studio

Astronomy 345: Plama Theory and Diagnostics II

https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4263
https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4263


Lecture: 3 Non-uniform B-field 45

3.5 Orbits and Grad-B drift

Figure 3.5: Curvature (inverse of curvature radius ) of orbit is greater where 𝐵 is greater 
causing orbit to be small on that side. Result is a drift perpendicular to both 𝐵 and ∇𝐵. 
Notice, though, that electrons and ions go in opposite directions, unlike 𝐄⃗ × 𝐁⃗ drift. 
Figure from F. Chen book

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 3 Non-uniform B-field 46

3.6 Drift speed

Let us estimate the drift speed. We can write from Equation 3.1:

|𝐯⃗∇𝐵| ≃
𝑣2⟂
2𝜔𝑐

𝐵|∇𝐵|
𝐵2

Assuming |∇𝐵| ≃ 𝐵/𝐿, where 𝐿 is the inhomogeneity length, and isotropic 

velocity distribution 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 𝑣:

|𝐯⃗∇𝐵| ≃
𝑣
𝜔𝑐
𝑣1𝐿 ≃ 𝑟𝐿

𝐿𝑣

so we see that the drift is 𝑟𝐿/𝐿 times the actual particle speed 𝑣, recall we 

assumed that it is a small parameter.

Indeed, the drift due to the magnetic field inhomogeneity is in general 

much smaller than the particle speed.

Note that drift-speed derivation is valid when the drift speed is much slower 

than the particle speed.
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4 Curvature drift

LECTURE OUTLINE

• Charge motion in curved magnetic field

• Magnetic field curvature drift velocity

• Curvature and grad-B drifts combined

• Ring current in Earth magnetosphere

• Drifts and particle acceleration
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4.1 Curved magnetic fields

Let us assume that 𝐁⃗ is curved with constant 

radius 𝑅𝑐 and we take 𝐵 to be constant. Again 

𝑅𝑐 needs to be large in comparison with 𝑟𝐿.2

The guiding centre drift arises from the cen-

trifugal force felt by the particles

𝐅⃗𝑐𝑓 =
𝑚𝑣2∥
𝑅𝑐

⃗𝐫
| ⃗𝐫|

= 𝑚𝑣2∥
𝐑⃗𝑐
𝑅2𝑐

2Strictly speaking such field does not obey Maxwell equation in vacuum, so ∇𝐵 should be added too.
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4.2 Field direction

Let us introduce (𝐛⃗ ⋅ ∇) ≡ 𝜕
𝜕𝑠

 is the derivative along the field line, which is 

the rate of change as one moves in the direction 𝐛⃗ = 𝐁⃗/𝐵, then

𝜕
𝜕𝑠 (𝐵𝐛⃗) = 𝐵 𝜕𝐛⃗

𝜕𝑠⏟
change of 𝐛⃗

+𝐛⃗ 𝜕𝐵
𝜕𝑠⏟

change of B

Note that the vector 𝑑𝐛⃗/𝑑𝑠 is directed perpendicular to 𝐛⃗ and towards the 

centre of osculating circle, hence we have minus sign.

Let us calculate the value of 𝑑𝐛⃗/𝑑𝑠.
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4.3 Derivative of a unit vector 𝑑𝐛⃗/𝑑𝑠

Let us consider the change of unit 

vector 𝐛⃗ along the osculating circle 

of radius 𝑅𝑐. In the limit Δ𝑠 → 0, 
we can write Δ𝑠 = 𝑅𝑐Δ𝜃. When 𝐛⃗
moves Δ𝜃, from the isosceles trian-

gle with |𝐛⃗(𝑠 +Δ𝑠)| = |𝐛⃗(𝑠)| = 1, we 

have |𝐛⃗(𝑠 + Δ𝑠) − 𝐛⃗(𝑠)| = Δ𝜃, hence

𝑑𝐛⃗
𝑑𝑠 = lim

Δ𝑠→0

𝐛⃗(𝑠 + Δ𝑠) − 𝐛⃗(𝑠)
Δ𝑠 = lim

Δ𝑠→0

Δ𝜃
𝑅𝑐Δ𝜃

𝐧⃗ = 𝐧⃗
𝑅𝑐

= −
𝐑⃗𝑐
𝑅2𝑐
.

The direction of 𝑑𝐛⃗/𝑑𝑠 in the limit Δ𝑠 → 0 can be seen from the triangle in 

the Figure. Δ𝐛⃗ is directed perpendicular to 𝐛⃗ and along 𝐧⃗, where 𝐧⃗ is the 

unit normal vector. 𝑑𝐛⃗/𝑑𝑠 is directed towards the centre of osculating circle, 

hence we have minus sign.
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4.4 Force due to the cuvature

Using the expression for 𝑑𝐛⃗/𝑑𝑠 and the definition (𝐛⃗ ⋅ ∇) ≡ 𝜕
𝜕𝑠
, we can 

re-write in ⃗𝐫 coordinates

𝐑⃗𝑐
𝑅2𝑐

= −𝜕𝐛⃗𝜕𝑠 = −(𝐛⃗ ⋅ ∇)𝐁⃗𝐵 = − 1
𝐵2 (𝐁⃗ ⋅ ∇)𝐁⃗

Then the force becomes

𝐅⃗𝑐𝑓 = −
𝑚𝑣2∥
𝐵2 (𝐁⃗ ⋅ ∇)𝐁⃗

and using (Equation 2.7), we substitute the force:

𝐯⃗𝑅 =
1
𝑞
𝐅⃗𝑐𝑓 × 𝐁⃗
𝐵2 =

𝑚𝑣2∥
𝑞𝐵2

𝐁⃗ × (𝐁⃗ ⋅ ∇)𝐁⃗
𝐵2
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and find the velocity of this drift:

Curvature drift: 𝐯⃗𝑅 = ±
𝑣2∥
𝜔𝑐
𝐑⃗𝑐 × 𝐁⃗
𝐵𝑅2𝑐

=
𝑚𝑣2∥
𝑞𝐵4 (𝐁⃗ × (𝐁⃗ ⋅ ∇)𝐁⃗) (4.1)

The curvature drift velocity is directed perpendicular to 𝐁⃗ and 𝐑⃗𝑐 and 

depends on the charge sign and mass.
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4.5 Curvature and grad-B drifts combined

Let us compute grad-B drift which accompanies the 

curvature drift: when the decrease of 𝐵 with radius 

is taken into account, i.e. in cylindrical coordinates 

𝐁⃗ = (0, 𝐵𝜃(𝑟), 0).

In vacuum, Maxwell equations require ∇⋅𝐁⃗ = 0 and 

∇× 𝐁⃗ = 0 = ⃗𝐣, where ⃗𝐣 is the current density. In the 

cylindrical coordinates ∇×𝐁⃗ has only 𝐞⃗𝑧 component, 

i.e. out of figure plane. Recall that in cylindrical 

coordinates

∇ × 𝐁⃗ =
|
|
|
|
|

𝐞⃗𝑟 𝐞⃗𝜃 𝐞⃗𝑧
1
𝑟
𝜕
𝜕𝑟
𝑟 1

𝑟
𝜕
𝜕𝜃

𝜕
𝜕𝑧

𝐵𝑟 𝐵𝜃 𝐵𝑧

|
|
|
|
|
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Since 𝐁⃗ = 0𝐞⃗𝑟 + 𝐵𝜃𝐞⃗𝜃 + 0𝐞⃗𝑧, we have

(∇ × 𝐁⃗)𝑧 =
1
𝑟
𝜕
𝜕𝑟(𝑟𝐵𝜃) = 0

then we find that

𝐵𝜃(𝑟) =
const

𝑟
hence 𝐵 ∝ 1/𝑅𝑐 and

∇𝐵
𝐵
|||𝑟=𝑅𝑐

= −
𝐑⃗𝑐
𝑅2𝑐

Using the grad-B drift velocity (Equation 3.1):

𝐯⃗∇𝐵 = ±
𝑣2⟂
2𝜔𝑐

𝐁⃗ × ∇𝐵
𝐵2

we substitute ∇𝐵 due to the curvature and find

𝐯⃗∇𝐵 = ∓
𝑣2⟂
2𝜔𝑐

𝐁⃗ × 𝐑⃗𝑐
𝐵𝑅2𝑐

= 1
2
𝑚𝑣2⟂
𝑞

𝐑⃗𝑐 × 𝐁⃗
𝐵2𝑅2𝑐

(4.2)
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Combining the curvature drift velocity (4.1) and (4.2) we find the velocity of 

the combined drift

𝐯⃗𝐵 = 𝐯⃗∇𝐵 + 𝐯⃗𝑅 =
𝑚
𝑞 (𝑣2∥ +

𝑣2⟂
2 )

𝐑𝐜 × 𝐁⃗
𝐵2𝑅2𝑐

(4.3)
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4.6 Drifts in non-uniform B

Figure 4.1:  Ring current and Earth magnetosphere, 
Daglis et al, 1999

We see that the total drift 

due to non-uniform field 𝐁⃗

𝐯⃗𝐵 =
𝑚
𝑞 (𝑣2∥ +

𝑣2⟂
2 )

𝐑𝐜 × 𝐁⃗
𝐵2𝑅2𝑐

is dependent on particle 

charge, mass and velocity. 

The direction of drift is ⟂
to both 𝐑⃗𝑐 and 𝐁⃗.

In the dipole field of Earth 

magnetosphere, we have 

drift depending on the charge, hence there is a current, called ring current.
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4.7 Ring current

Figure 4.2: Drifts and ring current in magnetosphere; image from NASA Earth ring current 
is an electric flows toroidally around the Earth. Azimuthally drifting particles trapped by the 
geomagnetic field create this current. Note that the changes in this current are responsible 
for global decreases in the Earth’s surface magnetic field Daglis et al, 1999.
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Figure 4.3: Artist’s impression of ring current from WAMI-project
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4.8 Importance of drifts

Drifts due to 𝐁⃗ inhomogeneity is often exemplified via particle transport 

effects, e.g. ring current in the Earth magnetosphere (Figure 4.2).

However, ∇𝐵 and curvature drifts are also important in understanding parti-

cle acceleration at shock waves and current sheets (where ⃗𝐣 ≠ 0).

For example, consider the solar wind flow onto Earth bow shock (Fig 4.1), 

where magnetic field strength increases across the shock. The drifts along 

the solar wind convection electric field −𝐮⃗𝑠𝑤 × 𝐁⃗𝑠𝑤 can lead to energy gain 

of the particles 𝑞𝐯⃗ ⋅ 𝐄⃗ > 0 (recall Equation 2.2). This mechanism is called 

shock-drift acceleration (for details see e.g. Bell & Melrose, 2001).
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5 Magnetic mirroring, adiabatic invariants

LECTURE OUTLINE

• Magnetic mirroring, particle trapping and loss-cone

• Mirror force and magnetic moment

• Adiabatic invariants

• Particle trapping in lab devices and in astrophysics
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5.1 Non-uniform magnetic fields

Consider non-uniform magnetic field 

with magnitude varying along 𝑧-direction, 
i.e. ∇𝐵 ∥ 𝐁⃗.

Let the field be axisymmetric, so that 

in cylindrical coordinates 𝐵𝜃 = 0 and 

𝜕𝐵/𝜕𝜃 = 0. Since the lines converge and 

diverge 𝐵𝑟 ≠ 0. From ∇ ⋅ 𝐁⃗ = 0 we have:

∇ ⋅ 𝐁⃗ = 1
𝑟
𝜕
𝜕𝑟 (𝑟𝐵𝑟) +

𝜕𝐵𝑧
𝜕𝑧 = 0

If 
𝜕𝐵𝑧
𝜕𝑧

 at 𝑟 = 0 is given and does not change much with 𝑟, we have:

𝑟𝐵𝑟 = −∫
𝑟

0
𝑟𝜕𝐵𝑧𝜕𝑧 𝑑𝑟 ≃ −𝑟

2

2
𝜕𝐵𝑧
𝜕𝑧

|||𝑟=0
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The variation of 𝐵 with 𝑟 causes a grad-B drift of guiding centres about the 

axis of symmetry, but there is no radial grad-B drift, because 𝜕𝐵/𝜕𝜃 = 0. 
Hence the component of the Lorentz force 𝑞𝐯⃗ × 𝐁⃗ are

𝑞𝐯⃗ × 𝐁⃗ = 𝑞𝐞⃗𝑟( 𝑣𝜃𝐵𝑧⏟
gyration

−0) + 𝑞𝐞⃗𝜃( − 𝑣𝑟𝐵𝑧⏟⎵⏟⎵⏟
gyration

+ 𝑣𝑧𝐵𝑟⏟⎵⏟⎵⏟
azimuthal force

) + 𝑞𝐞⃗𝑧(0 − 𝑣𝜃𝐵𝑟⏟⎵⏟⎵⏟
force along 𝐳⃗

)

𝐵𝑟 → 0 vanishes at the axis 𝑟 → 0; when it does not vanish, this is azimuthal 

force leading to a drift in the radial direction. This drift makes the guiding 

centres follow the field lines.

Let us consider 𝑧-component

𝐹𝑧 = −𝑞𝑣𝜃𝐵𝑟 = +
𝑞
2𝑣𝜃𝑟

𝜕𝐵𝑧
𝜕𝑧

and average over one gyro-orbit, setting 𝑣𝜃 = ∓𝑣⟂, 𝑟 = 𝑟𝐿 (see 1.12):

⟨𝐹𝑧⟩ = ∓
𝑞
2𝑣⟂𝑟𝐿

𝜕𝐵𝑧
𝜕𝑧 = −12

𝑚𝑣2⟂
𝐵

𝜕𝐵𝑧
𝜕𝑧
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and finally

⟨𝐹𝑧⟩ = −12
𝑚𝑣2⟂
𝐵

𝜕𝐵𝑧
𝜕𝑧 (5.1)

where we define the magnetic moment

𝜇 ≡ 1
2
𝑚𝑣2⟂
𝐵 (5.2)

and the force can be written in terms of magnetic moment for the force 

acting parallel to magnetic field 𝐁⃗:

⟨𝐹∥⟩ = −𝜇𝜕𝐵𝜕𝑠 = −𝜇∇∥𝐵 (5.3)

where 𝑑𝑠 is a line element directed along 𝐁⃗. This force is known as 

mirror force.
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5.2 Magnetic moment

The definition of magnetic moment 𝜇 is the same as the usual definition for 

magnetic moment of a current loop with area 𝐴 and current 𝐼:

𝜇 = 𝐼𝐴

The current 𝐼 = |𝑞|𝜔𝑐/2𝜋, area is 𝐴 = 𝜋𝑟2𝐿 = 𝜋𝑣2⟂/𝜔2𝑐 , hence

𝜇 = 𝐼𝐴 =
|𝑞|𝜔𝑐
2𝜋

𝜋𝑣2⟂
𝜔2𝑐

=
|𝑞|𝑚𝑣2⟂
2𝐵|𝑞| =

𝑚𝑣2⟂
2𝐵

The current 𝐼 is due to gyro-motion of a charged particle.
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5.3 Magnetic moment conservation

Consider the component of the motion equation along 𝐁⃗ when the magnetic 

field has ∇𝐵 ∥ 𝐵 (from Equation 5.3 ):

𝑚
𝑑𝑣∥
𝑑𝑡 = −𝜇𝜕𝐵𝜕𝑠

Multiplying by 𝑣∥:

𝑣∥𝑚
𝑑𝑣∥
𝑑𝑡 = 𝑑

𝑑𝑡 (
𝑚𝑣2∥
2 ) = −𝜇𝜕𝐵𝜕𝑠 𝑣∥ = −𝜇𝜕𝐵𝜕𝑠

𝑑𝑠
𝑑𝑡 = −𝜇𝑑𝐵𝑑𝑡

here 𝑑𝐵 is the variation of 𝐵 as seen by the moving particle; 𝐵 itself is con-

stant.

Since 𝑚𝑣2/2 = constant due to conservation of kinetic energy and from the 

definition of 𝜇, 𝑚𝑣2⟂/2 = 𝜇𝐵, we have

𝑑
𝑑𝑡
𝑚𝑣2
2 = 𝑑

𝑑𝑡 (
𝑚𝑣2⟂
2 +

𝑚𝑣2∥
2 ) = 𝑑

𝑑𝑡 (
𝑚𝑣2∥
2 + 𝜇𝐵)
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Combining with the previous equation

𝑑
𝑑𝑡 (𝜇𝐵) − 𝜇𝑑𝐵𝑑𝑡 = 0 ⇒

𝑑𝜇
𝑑𝑡 = 0 (5.4)

hence 𝜇 is a constant of motion or an invariant.

The invariance of 𝜇 is the basis for plasma/particle confinement using mag-

netic mirrors.
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5.4 Magnetic trapping and mirroring

As the particle moves from weak field 

region to a strong field region, 𝑣⟂
must increase to keep 𝜇 = const. 

Since 𝑣2⟂ + 𝑣2∥ = const, 𝑣∥ decreases 

and eventually becomes zero. This 

point is called mirror point: the par-

ticle reflects back to the region of 

weaker field. This is due to the mirror 

force.

The plasma is trapped between mag-

netic mirrors, i.e. magnetic trapping. 

Note that this works both for elec-

trons and ions.
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5.5 Loss-cone

The trapping is not perfect, i.e. not 

for all particles. If a particle has 𝑣⟂ =
0, it will have 𝜇 = 0 and hence will 

not feel the magnetic mirror force. 

So for small 𝑣⟂/𝑣∥, we expect escape 

of the particles from the trap.

Consider a particle with 𝑣∥0 and 𝑣⟂0 in the region 𝐵𝑚𝑖𝑛 initially.

conservation of 𝜇: 1
2
𝑚𝑣2⟂0
𝐵𝑚𝑖𝑛

= 1
2
𝑚𝑣′2⟂
𝐵𝑚𝑎𝑥

conservation of 𝑣2: 𝑣20 = 𝑣2⟂0 + 𝑣2∥0 = 𝑣′2⟂ + 𝑣′2∥
where 𝑣′∥ = 0 and 𝑣′⟂ are at the mirror point.
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Using these conservations, one finds that

𝐵𝑚𝑖𝑛
𝐵𝑚𝑎𝑥

=
𝑣2⟂0
𝑣′2⟂

=
𝑣2⟂0
𝑣20

= sin2 𝜃 ,

where sin 𝜃 ≡ 𝑣⟂0/𝑣0, 𝜃 is the pitch angle of the particle. Note that it is the 

angle in velocity space.

Depending on the initial sin 𝜃, the particles can be 

either trapped or escape. When sin 𝜃0 of the particle 

in the region 𝐵𝑚𝑖𝑛 such that

sin2 𝜃0 < sin2 𝜃 =
𝐵𝑚𝑖𝑛
𝐵𝑚𝑎𝑥

⇒ escape

and the angle 𝜃 is loss-cone angle.

In the opposite case:

sin2 𝜃0 > sin2 𝜃 =
𝐵𝑚𝑖𝑛
𝐵𝑚𝑎𝑥

⇒ trapping
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5.6 Mirror devices

Figure 5.1: magnetic mirroring occurs in nature as well as in plasma devices. A Magnetic 
Mirror Concept from Simonen et al, 2008
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5.7 The Earth’s magnetic field and Van Allen radiation belts

Figure 5.2: Van Allen radiation belts consist of energetic particles trapped in the Earth’s 
dipole-like magnetic field. The inner belt, 1-3 Earth radii is mostly populated by protons 
with energies exceeding 10 MeV. These protons are thought to be the decay of neutrons 
which are emitted from the Earth’s atmosphere as it is bombarded by cosmic rays. The 
outer belt, about 3-9 Earth radii is mostly electrons with energies below 10 MeV. The 
origin of these electrons is via injection from the outer magnetosphere. See utexas.edu 
Figure from utk.edu
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5.8 Solar (and stellar) magnetic loops

Figure 5.3: Magnetic mirroring also could be important for particles in the solar magnetic 
loops. Left: Cartoon of trap/precipitation model for an asymmetric loop from  by Ed 
Schmahl et al Right: EUV solar loops NASA SDO
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5.9 Adiabatic invariants

It is well-known in classical mechanics that whenever as system has a periodic 

motion, the action integral taken over a period is a constant:

∮𝑝𝑑𝑞 = const ,

where 𝑝 and 𝑞 are generalised momentum and coordinate, which repeat 

themselves in the motion. If a slow change is made in the system, so that 

the motion is not quite periodic, the constant of the motion does not change 

and is then called adiabatic invariant. The ’slow’ here, slow compared with 

the period of motion, so the integral ∮ is well defined though it is strictly no 

longer an integral over a closed path.
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5.10 First adiabatic invariant

Larmor gyration gives periodic motion (see 

the discussion of motion in constant 𝐵-field 

1.12), so that

∮𝑝𝑑𝑞 = ∮𝑚𝑣⟂𝑟𝐿𝑑𝜙 = 𝑚𝑣⟂𝑟𝐿2𝜋 = 4𝜋𝑚|𝑞|𝜇

so we find that 𝜇 = 𝑚𝑣2⟂/2𝐵, magnetic moment is a constant. [See our 

derivation 5.4].

𝜇 is conserved when 𝐁⃗ changes slowly, e.g. Δ𝑡 is much larger than gyro-

period ∼ 1/𝜔𝑐
Δ𝑡 ≫ 1/𝜔𝑐

when Δ𝑡𝜔𝑐 < 1, 𝜇 is not conserved.
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5.11 Violation of the first adiabatic invariant

One of the most important examples of the violation is the presence of waves. 

The interaction is particularly strong when the wave frequency 𝜔𝑤 is the 

integer

𝜔𝑤 = 𝑛𝜔𝑐, 𝑛 = 1, 2, 3,…

which is called cyclotron resonance. Here, the rotating field of the wave 

leads to acceleration of a particle, increase of 𝑣⟂ and violation of the first 

adiabatic invariant.

Similarly, spatial variation of 𝐵 at ⟂ distances ∼ 𝑟𝐿 leads to violation of the 

invariant. Abrupt changes of magnetic field could appear in shocks and the 

other types of discontinuities. These effects are particularly important for 

ions, as they have larger larmor radii.
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5.12 Second adiabatic invariant

When a particle bounces between 

two mirrors, there is a periodic mo-

tion at the ’bounce frequency’. A 

constant of this motion is given by 

∮𝑚𝑣∥𝑑𝑠 where the integration is 

over the bounce period, 𝑠 is the coor-

dinate along 𝐁⃗. Since guiding centre 

drifts across-field lines, the motion 

not exactly periodic and the constant of motion becomes adiabatic invariant. 

This is also called the longitudinal invariant, 𝐽

𝐽 = ∫
𝑏

𝑎
𝑣∥𝑑𝑠

and is defined for a half-cycle between mirror points 𝑎 and 𝑏.
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5.13 Violation of the second adiabatic invariant

One of the important examples of the violation of 𝐽 invariance is given via by 

plasma heating (particle acceleration) scheme called ’transit-time magnetic 

pumping’. This is achieved by creating 𝑎 and 𝑏 dependent on time, so that 

the particles see approaching mirror points. This leads to increase of 𝑣∥.

The acceleration of particles by collisions against moving magnetic fields 

(suggested by Fermi, 1949) plays an important role in many astrophysical 

applications, e.g. cosmic rays, solar flares.
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6 Radiation from charged particles

LECTURE OUTLINE

• Radiation by accelerated charged particle

• Larmor formula derivation

• Cyclotron and synchrotron radiation
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6.1 Radiation from an accelerated charge

Charged particles can radiate if they move with acceleration.

Gyromotion in magnetic field is an example of accelerated motion. Radia-

tion from particles spiralling in a magnetic field is generally called cyclotron 

radiation. If radiating particles are relativistic, the radiation is synchrotron 

radiation.

Examples of such radiation: extragalactic jets, solar flares, supernova rem-

nants, etc

Let us develop the expression for radiation from an accelerated charged 

particle, then apply it to the case of particles moving in helical orbits.

We will use simplified treatment (see High Energy Astrophysics, by Longair)
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6.2 Charge field

Consider a charge 𝑞 at 𝑡 = 0, station-
ary at the origin of some laboratory 

rest frame. The electric field 𝐄⃗ can 

be represented as radial lines from 

the charge:

𝐄⃗ =
𝑞

4𝜋𝜀0
⃗𝐫

𝑟3 (6.1)

where ⃗𝐫 is the radius vector centered at the charge.

Let the particle now accelerate to speed Δ𝑣 in time Δ𝑡.

Here we assume that Δ𝑣 ≪ 𝑐, so that relativistic abberations are small.
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Figure 6.1: Electric field of an oscillating charge. Animation available from Youtube
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6.3 The signal due to the distortion the electric field

Within a distance 𝑟 = 𝑐𝑡, the field lines are 

radial, centered on the new position of the 

charge.

Outside 𝑟 = 𝑐(𝑡+Δ𝑡), the field lines are also 

radial and have not responded to the change 

and still have their old configuration.

Between the two regions, there is a thin shell 

of thickness 𝑐Δ𝑡 across, which we have to 

join up the field lines.

Geometrically, there must be a non-radial 

component of 𝐄⃗ in this small thin shell. This 

constitutes a propagating ’pulse’ of electromagnetic field.

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 6 Radiation from charged particles 83

6.4 Electric field in the pulse

Let us work out the electric field in 

the propagating pulse. Magnify up a 

small cone of the field. So the electric 

lines are radial at 𝑡 = 0 and also at 

time 𝑡, but with different origins.

Join up these radial lines as shown. 

The field has radial component 𝐄⃗𝑟
given by Equation (6.1) and 𝐄⃗𝜑 com-

ponent. The strength of 𝐄⃗𝜑 compo-

nent is given by the number of field 

lines per unit area in 𝐞⃗𝜑 direction. 

From geometry, the ratio of 𝐸𝜑/𝐸𝑟 is given by the ratio of length 𝐴𝐵 to 
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the length 𝐴𝐷:
𝐸𝜑
𝐸𝑟

=
Δ𝑣𝑡 sin𝜑
𝑐Δ𝑡 (6.2)

Substituting for 𝐸𝑟 from (6.1):

𝐸𝜑 =
Δ𝑣𝑡 sin𝜑
𝑐Δ𝑡

𝑞
4𝜋𝜀0

1
𝑟2

where we set 𝑡 = 𝑟/𝑐 and Δ𝑣/Δ𝑡 = ̇𝑣 and obtain:

𝐸𝜑 = ̇𝑣 sin𝜑
𝑞

4𝜋𝜀0
1
𝑐2𝑟 (6.3)

𝐸𝜑 is known as the ’acceleration field’. The strength varies as 1/𝑟 in contrast 

to the radial field of the charge which decreases as 1/𝑟2.

This ’kink’ in the electric field is an outward propagating pulse of electromag-

netic radiation. Hence the energy per unit area per second at distance 𝑟 into 
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the direction ⃗𝐫 is given by the Poynting vector:

𝐒⃗ = 𝐄⃗ × 𝐁⃗
𝜇0

= 𝑐 𝜖0|𝐄⃗|2⏟
energy density

⃗𝐫
𝑟 (6.4)
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6.5 Power radiated

The total energy radiated per second 𝑃 can be found by integrating 𝐒⃗ over 

the surface of the sphere at distance 𝑟 from the charge, so

𝑃 = ∮ 𝐒⃗𝑑𝐀⃗ = ∮
Ω
𝐒⃗𝑟2𝑑𝛀⃗

and substituting expression for 𝐒⃗ from 6.4, we find

𝑃 = ∮
Ω
𝐒⃗𝑟2𝑑𝛀⃗ = 𝑐𝜀0∫

𝜋

0
( ̇𝑣 sin𝜑

𝑞
4𝜋𝜀0

1
𝑐2𝑟)

2
𝑟2 2𝜋 sin𝜑𝑑𝜑⏟⎵⎵⏟⎵⎵⏟

𝑑Ω

=

=
𝑞2 ̇𝑣2

8𝜋𝜀0𝑐3
∫

𝜋

0
sin3 𝜑𝑑𝜑

⏟⎵⎵⎵⏟⎵⎵⎵⏟
=4/3
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Rewriting we derive Larmor formula

𝑃 =
𝑞2 ̇𝑣2

6𝜋𝜀0𝑐3
(6.5)

which gives the radiated power from an electric charge 𝑞.

The equation can be applied to e.g. the case of an electron gyrating in a 

magnetic field.

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 6 Radiation from charged particles 88

6.6 Cyclotron (synchrotron) radiation

Similar to High Energy Astrophysics course consider the rest frame of the 

charge 𝑞, i.e. the charge is stationary in this frame. Call this frame S’. The 

laboratory frame is S:

S frame: 𝑚𝑑𝐯⃗𝑑𝑡 = 𝑞𝐯⃗ × 𝐁⃗

S’ frame: 𝑚𝑑𝐯⃗
′

𝑑𝑡′ = 𝑞𝐄⃗′

Due to relativistic transformation of 𝐄⃗ and 𝐁⃗, the electric field 𝐸′ = 𝑣𝛾𝐵 sin 𝜃, 
where 𝛾 is the Lorenz factor, 𝜃 is the particle pitch angle. Hence we have

̇𝑣′ =
𝑞
𝑚𝐸

′

Then using Larmor formula, we find

𝑃′ =
𝑞2 ̇𝑣′2

6𝜋𝜖0𝑐3
=

𝑞2

6𝜋𝜖0𝑐3
(
𝑞𝑣𝛾𝐵 sin(𝜃)

𝑚 )
2
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which is the power (energy per unit time) radiated in the rest frame of the 

electron. Since the power is Lorenz invariant 𝑃′ = 𝑃.

In the lab frame, we find the power emitted by an particle with pitch 

angle 𝜃

𝑃 =
𝑞4

6𝜋𝜖0𝑐3𝑚2𝑣
2𝛾2𝐵2 sin2(𝜃) (6.6)

which can be re-written

𝑃 = 2𝜎𝑇𝑐𝑈𝐵𝛾2 sin2 𝜃 ,

where 𝜎𝑇 is Thomson cross-section, 𝑈𝐵 = 𝐵2/2𝜇0 is the magnetic energy 

density3.

3Recall High Energy Astrophysics I lectures
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6.7 Spectrum of cyclotron and synchrotron radiation

In the non-relativistic case, the radiation is 

emitted in a single line at the electron gyro-

frequency.

In the mildly relativistic case, not all of the 

radiation is emitted at the gyro-frequency. 

The radiation spectrum can be decomposed 

by Fourier analysis into the sum of dipolar 

patterns, each radiating at integer multiplies 

harmonics of the relativistic gyro-frequency 

𝜔𝑟, where
𝜔𝑟 =

𝜔𝑐
𝛾 =

|𝑞|𝐵
𝛾𝑚0

,

where 𝛾 is the Lorentz factor, 𝑚0 is the rest mass.
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If the particle travelling at 𝑣∥, with 

pitch angle 𝜃, the harmonics are dis-

placed because of the Doppler shift 

of the electron’s radiation, so that 𝑛-
th harmonic is at the frequency:

𝜔𝑛 =
𝑛𝜔𝑟

(1 − 𝑣∥/𝑐)
, 𝑛 = 1, 2, 3,…

The term 𝑣∥/𝑐 displaces the spectral 

lines from exact multiples of 𝜔𝑟, which is the Doppler shift.

The lower curves show each harmonic component, and the upper lines gives 

the total 𝑃(𝜔).
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6.8 Relativistic case (synchrotron radiation)

Figure 6.2:  Synchrotron spec-
trum of a single electron

In the relativistic limit, as 𝑣 → 𝑐, the harmon-

ics become higher and closer together. The 

spectrum of distinct peaks emitted by a single 

electron merges into a continuum 4.

Typical frequency of synchrotron radiation is

𝜈𝑠 =
3
2𝛾

2 ( 𝑒𝐵
2𝜋𝑚) (6.7)

Synchrotron radiation is emitted over a wide range of frequencies (Figure 

6.2).

Peak occurs at ∼ 0.3𝜈𝑠, but average frequency value ⟨𝜈⟩ ≃ 𝜈𝑠. At low fre-

quencies, 𝜈 ≪ 𝜈𝑠, the spectrum grows ∝ 𝜈1/3 (Figure 6.2).

4see HEAI lecture notes
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6.9 Relativistic beaming

Non-relativistic electron has a symmetric dipolar radiation pattern in its rest 

frame. Indeed, since 𝐸𝜑 depends on angle 𝜑 [Recall equation 6.3]

𝐸𝜑 =
𝑞 ̇𝑣 sin𝜑
4𝜋𝜀0𝑐2𝑟

then the power radiated into solid angle 𝑑Ω′ in the particle rest frame is

𝑑𝑃′
𝑑Ω′ =

𝑞2 ̇𝑣2 sin2 𝜑
(4𝜋)2𝜀0𝑐3

(6.8)
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7 Faraday rotation

LECTURE OUTLINE

• Propagation of electromagnetic waves in magnetised plasma

• Faraday rotation angle
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7.1 EM waves in plasma

The radio waves (EM waves) generally has to pass through the plasma to 

reach the observer. As it propagates, EM wave interacts with the plasma

We will focus on the change 

of polarization as EM wave 

propagates through a mag-

netised plasma. This phe-

nomenon (rotation of polar-

ization vector) is called Fara-

day rotation.

The amount of rotation depends on both the magnetic field strength and 

the plasma density. Hence Faraday rotation can, in principle, be used to 

diagnose 𝐁⃗ and 𝑛 in plasma.
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7.2 Left and Right CP polarized waves

Consider a linearly polarized wave 

as the sum of two counter-rotating 

circularly polarized waves - left and 

right.

𝐄⃗-field vector describes a circle as 

the wave propagates in 𝑧-direction. 
At a particular point in space, 𝐄⃗ varies 

with time as

𝐸𝑥 =𝐸𝑥𝑜 cos𝜔𝑡
𝐸𝑦 =𝐸𝑦𝑜 sin𝜔𝑡

For a circularly polarized wave |𝐸𝑥𝑜| = |𝐸𝑦𝑜|, but in general |𝐸𝑥𝑜| ≠ |𝐸𝑦𝑜|, i.e. 
elliptically polarized waves.
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When looking towards the source:

Right CP ⟹𝐄⃗ rotates anticlockwise

Left CP ⟹𝐄⃗ rotates clockwise

Looking from the source RCP is LCP and LCP is RCP.

Figure 7.1: Linearly-polarized wave can be considered as a superposition of two CP waves.

As LCP and RCP waves prorogate differently through a magnetized plasma 

(Recall PTD course part1), so after some small distance 𝑑𝑧, LCP and RCP 

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 7 Faraday rotation 98

𝐄⃗-vectors will have rotated by small angles 𝑑𝜑𝐿 and 𝑑𝜑𝑅:

𝑑𝜑𝐿 = 𝑘−𝑑𝑧
𝑑𝜑𝑅 = 𝑘+𝑑𝑧

where 𝑘− and 𝑘+ are the wave vectors of LCP and RCP waves respectively. 

As each wave advances in 𝑧, its polarization vector slowly rotates.

The net rotation of the vector superposition, i.e. the net rotation of the plane 

polarization is

𝑑𝜑 = 1
2(𝑑𝜑𝐿 − 𝑑𝜑𝑅) =

1
2(𝑘− − 𝑘+)𝑑𝑧 (7.1)

Let us relate this change in polarization angle to the properties of the wave 

and the plasma in which it is travelling.
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7.3 Dispersion relation

We can use the dispersion relation of the plasma, which relates the wavenum-

ber, frequency and plasma parameters. For a cold plasma we have (see PTDI 

lecture notes) :

(
𝑆 − 𝑛2 cos2 𝜃 −𝑖𝐷 𝑛2 cos 𝜃 sin 𝜃

𝑖𝐷 𝑆 − 𝑛2 0
𝑛2 cos 𝜃 sin 𝜃 0 𝑃 − 𝑛2 sin2 𝜃

)(
𝐸𝑥
𝐸𝑦
𝐸𝑧
) = 0 (7.2)

where 𝑛 = 𝑘𝑐/𝜔 is the refractive index, 𝜃 is the angle between 𝐤⃗ and 𝐁⃗, and 

the quantities 𝑆, 𝐷, and 𝑃 are:

𝑆 = 1
2
(𝑅 + 𝐿)

𝐷 = 1
2
(𝑅 − 𝐿)

𝑃 = 1 − 𝜔2
𝑝𝑒

𝜔2

where 

𝑅 = 1 − 𝜔2
𝑝𝑒

𝜔(𝜔−𝜔𝑐𝑒)

𝐿 = 1 − 𝜔2
𝑝𝑒

𝜔(𝜔+𝜔𝑐𝑒)
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7.4 High frequency waves

The dispersion relation (7.2) already includes the fact that 𝑚𝑒/𝑚𝑖 ≪ 1 and 

we ignored 𝜔𝑐𝑖 in comparison with 𝜔𝑐𝑒.

Let us consider EM wave with 𝜔 ≫ 𝜔𝑝𝑒 and 𝜔 ≫ 𝜔𝑐𝑒:

𝑆 =12(𝑅 + 𝐿) = 1
2 (1 −

𝜔2𝑝𝑒
𝜔(𝜔 − 𝜔𝑐𝑒)

+ 1 −
𝜔2𝑝𝑒

𝜔(𝜔 + 𝜔𝑐𝑒)
)

=12 (2 −
𝜔2𝑝𝑒
𝜔
(𝜔 + 𝜔𝑐𝑒) + (𝜔 − 𝜔𝑐𝑒)

𝜔2 − 𝜔2𝑐𝑒
) = 1 −

𝜔2𝑝𝑒
𝜔2 − 𝜔2𝑐𝑒⏟⎵⏟⎵⏟

=−𝑟𝑝

= 1 + 𝑟𝑝
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so we can write5

𝑆 =1 + 𝑟𝑝
𝐷 =𝑟𝑝

𝜔𝑐𝑒
𝜔

𝑃 =1 −
𝜔2𝑝𝑒
𝜔2 ≃⏟

𝜔≫𝜔𝑐𝑒

𝑆

5Check expression for 𝐷 at home
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7.5 Refractive index

We can consider a simplified version of refractive index, assuming propagat-

ing close to the direction of the field 𝐁⃗, then

𝑛2± ≃ 𝑆 ± 𝐷 cos 𝜃 (7.3)

where ± corresponds to RCP and LCP waves respectively.

Substituting expressions for 𝑆 and 𝐷, we have for 𝜔 ≫ 𝜔𝑝𝑒 and 𝜔 ≫ 𝜔𝑐𝑒:

𝑛2± ≃ 1 + 𝑟𝑝 ± 𝑟𝑝
𝜔𝑐𝑒
𝜔 cos 𝜃 ≃ 1 −

𝜔2𝑝𝑒
𝜔2 ∓

𝜔𝑐𝑒𝜔2𝑝𝑒
𝜔3 cos 𝜃

hence using Taylor expansion we have

𝑛± ≃ (1 −
𝜔2𝑝𝑒
𝜔2 ∓

𝜔𝑐𝑒𝜔2𝑝𝑒
𝜔3 cos 𝜃)

1/2

≃ 1 −
𝜔2𝑝𝑒
2𝜔2 ∓

𝜔𝑐𝑒𝜔2𝑝𝑒
2𝜔3 cos 𝜃 (7.4)
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7.6 Rotation change

Using that 𝑘 = 𝜔𝑛/𝑐 and the expressions for 𝑛± (Equation 7.4), we can now 

find 𝑘− − 𝑘+:

𝑘− − 𝑘+ =
𝜔
𝑐 (𝑛− − 𝑛+) =

𝜔
𝑐
𝜔𝑐𝑒𝜔2𝑝𝑒
𝜔3 cos 𝜃

Hence we find the Faraday rotation angle:

𝑑𝜑 = 1
2
𝜔𝑐𝑒𝜔2𝑝𝑒
𝑐𝜔2 cos 𝜃𝑑𝑧 (7.5)

Left-handed circularly polarized wave will travel at a slightly lower phase 

velocity, than RCP increasing the polarization angle.
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Using 𝜔𝑝𝑒 = √𝑒2𝑛𝑒/𝑚𝜀0 and 𝜔𝑐𝑒 = 𝑒𝐵/𝑚

𝑑𝜑
𝑑𝑧 =

1
2
𝑒2𝑛𝑒
𝑚𝜖0

𝑒𝐵
𝑚

𝜆2

(2𝜋)2𝑐3
cos 𝜃 =

𝑒3𝐵𝑛𝑒𝜆2

8𝜋2𝑚2𝜖0𝑐3
cos 𝜃

To find the total Faraday rotation angle 𝜑 occuring over a path 𝑟, we integrate 

along the path

𝜑𝐹 =
𝑒3𝜆2

8𝜋2𝑚2𝜖0𝑐3
∫

𝑟

0
𝐵(𝑧)𝑛𝑒(𝑧) cos 𝜃𝑑𝑧 (7.6)

Assuming a uniform electron number density 𝑛𝑒 = const, 𝜑𝐹 is a measure of 

𝐵 along the line-of-sight to the observer.

The physical reason for the Faraday rotation is that the two signs of circular 

polarization interact differently with the plasma - the plasma has a different 

refractive index for different polarizations of EM waves. The phase speed for 

waves, 𝜔/𝑘 with polarization vector rotating with the direction of spiraling 
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of electrons in somewhat higher that that a wave with polarisation vector 

rotating in the opposite direction to electron spiralling.

The rotation is higher for longer wavelength waves 𝜑𝐹 ∝ 𝜆2 or lower 

frequency waves. Hence important for radio observations.
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7.7 Faraday rotation measurements

Figure 7.2: Illustration of coro-
nal faraday rotation from Span-
gler, 2005

Faraday rotation is used 

to measure 𝐵 (making as-

sumption on plasma den-

sity) by looking through 

this plasma, e.g. in the in-

terstellar medium, in the 

solar corona, in our Galaxy 

(by observing large num-

ber of sources)
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7.8 Rotation measure maps

Figure 7.3: Rotation measure distribu-
tion in galaxy cluster Abell 2634 from 
Eilek & Owen, 2002
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8 Coulomb collisions

LECTURE OUTLINE

• Coulomb collisions in plasma

• Coulomb logarithm

• Mean free path

• Electron-ion, electron-electron and ion-ion collisions
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8.1 Binary Coulomb collision

Let consider a binary Coulomb collision of two plasma particles (e.g. 𝑒 − 𝑒, 
𝑖 − 𝑖, or 𝑒 − 𝑖). The Coulomb force between tow charges is

𝐹 =
𝑞1𝑞2
4𝜋𝜖0𝑟2

(8.1)

where 𝑞1,𝑞2 are the charges, 𝑟 is the distance between the charges. For 

simplicity, consider electron interacting with a heavy ion (𝑚𝑖 >> 𝑚𝑒):

and introduce impact parameter 𝑏, and scattering angle 𝜒.
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8.2 Change of perpendicular velocity

Let us consider the change of 𝑣⟂ when we have a massive (immobile) ion 

𝑚𝑖 ≫ 𝑚𝑒. The change of perpendicular momentum from equation of 

motion 𝑚𝑒𝑑𝐯⃗/𝑑𝑡 = 𝐅⃗ can be written:

𝑚𝑒𝑣⟂ = ∫
∞

−∞
𝐹𝑑𝑡 ≃ 𝐹Δ𝑡

where Δ𝑡 is the time of interaction. Let approximate:

𝑚𝑒𝑣⟂ ≃ 𝐹Δ𝑡 ≃
𝑞𝑒𝑞𝑖
4𝜋𝜖0𝑟2

𝑟
𝑣 =

𝑞𝑒𝑞𝑖
4𝜋𝜖0𝑟𝑣

and 𝑟 ≃ 𝑏.

For large-angle collisions, i.e. 𝜒 ∼ 90𝑜, the change of 𝑚𝑒𝑣⟂ is of the order of 

𝑚𝑣 itself, so

𝑚𝑒𝑣⟂ ≃ 𝑚𝑒𝑣 ≃
𝑞𝑒𝑞𝑖

4𝜋𝜖0𝑏𝑣
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so we can estimate impact parameter 𝑏:

𝑏 =
𝑞𝑒𝑞𝑖

4𝜋𝜖0𝑚𝑒𝑣2
(8.2)
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8.3 Collision cross-section and collision frequency

The interaction between two particles can be described using the cross-

section of the interaction, 𝜎, [units of area] 6 which we take as the area of 

the disk with radius 𝑏:
𝜎 = 𝜋𝑏2

We simply say that the interaction is happening for impact parameters less 

than 𝑏 from Equation 8.2 and no interaction for larger 𝑏. Then the cross-

section of interaction can be written:

𝜎𝑒𝑖 = 𝜋
𝑞2𝑒𝑞2𝑖

(4𝜋𝜖0)2(𝑚𝑒𝑣2)2
(8.3)

and the collision frequency or collision rate:

𝜈𝑒𝑖 = 𝑛𝜎𝑒𝑖𝑣 (8.4)

6recall High Energy Astrophysics I, see HEAI notes on moodle
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Then 𝑒 − 𝑖 collision frequency for 𝑧 = 1 plasma (hydrogen plasma), with 

𝑛𝑒 = 𝑛𝑖 = 𝑛 and 𝑞𝑒 = −𝑞𝑖 = 𝑒, where 𝑒 is the electron charge, becomes:

𝜈𝑒𝑖 = 𝑛𝜎𝑒𝑖𝑣 ≃
𝜋𝑒4𝑛𝑣

(4𝜋𝜖0)2(𝑚𝑒𝑣2)2
∝ 𝑛
𝑣3

For the electrons with thermal energy 𝑘𝐵𝑇𝑒 = 𝑚𝑒𝑣2𝑇𝑒/2, 𝑣𝑇𝑒 = (2𝑘𝐵𝑇𝑒/𝑚𝑒)1/2, 
so we find

𝜈𝑒𝑖 ≃
√2
64𝜋

𝜔4𝑝𝑒
𝑛 (

𝑘𝐵𝑇
𝑚 )

−3/2
= 𝜋𝑛𝑒4

23/2(4𝜋𝜖0)2𝑚2(𝑘𝐵𝑇𝑒/𝑚)3/2
∝ 𝑛𝑇−3/2

𝑒

Note that this is a rough estimate, there are many small-angle (small 𝜒) 
collisions in plasma.

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 8 Coulomb collisions 114

8.4 Coulomb logarithm

A more rigorous estimate gives (see book by Francis F. Chen (2006) [GU 

Library link])

𝜈𝑒𝑖 =
4√2
3√𝜋

𝜋𝑛𝑒4 lnΛ
(4𝜋𝜖0)2𝑚1/2

𝑒 (𝑘𝐵𝑇𝑒)3/2
(8.5)

where Λ ≃ 𝑛𝑒𝜆3𝐷𝑒 is the number of particles in Debye sphere and 𝜆𝐷𝑒 =
(𝜖0𝑘𝐵𝑇𝑒/𝑒2𝑛)1/2 is Debye length, where lnΛ is called Coulomb logarithm, and 

normally assumed to be a constant number lnΛ ≃ 10 − 20 in astrophysical 

plasmas.
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8.5 Mean free path

Let us estimate the mean free path of an electron in plasma

𝜆 = 𝑣
𝜈𝑒𝑖

≃
𝑣𝑇𝑒
𝜈𝑒𝑖

≃
𝜔𝑝𝑒𝜆𝐷𝑒
𝜈𝑒𝑖

≃ (
𝜔𝑝𝑒
𝜈𝑒𝑖

) 𝜆𝐷𝑒

where normally 𝜔𝑝𝑒/𝜈𝑒𝑖 ≫ 1.

Substituting constants into Equation (8.5), we can write

𝜈𝑒𝑖 ≃
5 × 10−11𝑛𝑒[𝑚−3]
(𝑘𝐵𝑇𝑒[𝑒𝑉])3/2

( lnΛ17 ) , [s−1] (8.6)

For, say solar corona plasma 𝑛 ∼ 1015 m−3, 𝑘𝐵𝑇𝑒 ∼ 102 eV, we estimate, 

𝜈𝑒𝑖 ≃ 50, [s−1].

Using that 𝜈𝑝𝑒 = 𝜔𝑝𝑒/2𝜋 ≃ 9 × (𝑛𝑒[cm−3])1/2  [kHz], we estimate 𝜈𝑝𝑒 ∼
3×108 [s−1], which is much larger than 𝜈𝑒𝑖. Hence the plasma can be viewed 

collisionless. Hence the collisional mean free path is much larger than the 

Debye length.
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8.6 Multiple collisions and mean free path

Figure 8.1: A charge travelling in plasma experiences many small-angle scatterings. The 
mean collision length of a charged particle is the average distance it moves in being 
deflected so that Δ𝑣 ≃ 𝑣, from Cullen 2006.
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8.7 Electron-ion, electron-electron, and ion-ion equilibration

Consider plasma with 𝑇𝑒 ∼ 𝑇𝑖 and 𝑛𝑒 ≃ 𝑛𝑖. For electron-ion collisions in 

plasma we found 𝜈𝑒𝑖 ∝ 𝑛/(𝑚1/2
𝑒 𝑇3/2

𝑒 ) the quantity 𝜏𝑒𝑖 ≡ 1/𝜈𝑒𝑖 is the average 

time between 𝑒 − 𝑖 collisions, or mean free time.

For 𝑒 − 𝑒 collision frequency (we need to take into account finite mass of the 

scattering particle and replace it with 𝑚𝑒), this gives a factor of 2, so

𝜈𝑒𝑒 ≃ 𝜈𝑒𝑖/√2

For 𝑖 − 𝑖 collisions 𝑚𝑒 to be changed to 𝑚𝑖 in Equation (8.5), so we have

𝜈𝑖𝑖 ≃ (
𝑚𝑒
𝑚𝑖

)
1/2

𝜈𝑒𝑒

For ’ion-electron collisions’ (centre of mass transformation gives a factor 

𝑚𝑒/𝑚𝑖), hence we have:

𝜈𝑖𝑒 ≃
𝑚𝑒
𝑚𝑖

𝜈𝑒𝑒
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These times are momentum loss times.
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8.8 Collisional energy exchange

Let us consider now 𝑇𝑒 ≠ 𝑇𝑖, and find the time of energy exchange between 

𝑒 − 𝑒, 𝑒 − 𝑖 and 𝑒 − 𝑖. The energy exchange times are

𝜏𝐸𝑒𝑒 ∶ 𝜏𝐸𝑖𝑖 ∶ 𝜏𝐸𝑒𝑖 ∼ 1 ∶ (
𝑚𝑖
𝑚𝑒

)
1/2

∶
𝑚𝑖
𝑚𝑒

(8.7)

we note 𝜈𝑒𝑖 and 𝜏𝑒𝑖 = 𝜈−1𝑒𝑖  is not the (time) of the establishment of thermal 

equilibrium between the electrons and ions; it describes the rate of momen-

tum transfer from electrons to the ions, not the rate of energy exchange 

between them. The relaxation time for electrons-ion eqvilibrium is given by 

ion-electron collision and ∼ 𝑚𝑒/𝑚𝑖 slower than 𝜈𝑒𝑒.

Hence for Hydrogen plasma 𝑚𝑖/𝑚𝑒 = 1836, we have:

𝜏𝑒𝑒 ∶ 𝜏𝑖𝑖 ∶ 𝜏𝐸𝑒𝑖 ∼ 1 ∶ 43 ∶ 1836
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Electrons and ions equilibrate among themselves much faster than with each 

other. Different 𝑇𝑒 and 𝑇𝑖 are often observed in astrophysical plasmas (see 

book by Pitaevskii and Lifshitz [GU library]).
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9 Collisional resistivity and diffusion in plasma

LECTURE OUTLINE

• Collisional diffusion of particles in plasma

• Collisional resistivity and electrical conductivity

• Driecer field
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9.1 Collisional momentum and energy change

As we saw, collisions change momentum and energy of particles. It has 

important implications.

The energy loss collision frequency, which is to do with slowing down to 

rest and exchanging energy, is important for e.g. equilibration times (of 

temperatures) and energy transfer between species.

The momentum loss frequency, which is to do with loss of directed velocity, 

is required for calculating mobility: conductivity/resistivity, viscosity, particle 

diffusion, energy (thermal) diffusion.
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9.2 Collisional resistivity and electrical conductivity

Consider unmagnetised, quasi-neutral 𝑛𝑖 ≃ 𝑛𝑒 plasma of ions and electrons 

q_i = q_e = 𝑒. In response to an applied electric field 𝐄⃗, an electric current 

will flow in plasma. The current density is:

⃗𝐣 = 𝑛𝑖𝑒𝐯⃗𝑖 − 𝑛𝑒𝑒𝐯⃗𝑒

Since electrons have 𝑚𝑒 ≪ 𝑚𝑖, so the plasma current is carried mostly by 

electrons. Hence consider electron momentum equation (fluid):

𝑚𝑒𝑛𝑒
𝑑𝐯⃗𝑒
𝑑𝑡 = −𝑒𝑛𝑒𝐄⃗ + 𝑚𝑒𝑛𝑒𝜈𝑒𝑖(𝐯⃗𝑖 − 𝐯⃗𝑒)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

due to collisions

(9.1)

In steady state, we have 𝑑𝐯⃗𝑒/𝑑𝑡 = 0, so we find

𝐄⃗ =
𝑚𝑒𝜈𝑒𝑖

=𝐣⃗/𝑒

⏞⎴⎴⏞⎴⎴⏞𝑛𝑒(𝐯⃗𝑖 − 𝐯⃗𝑒)
𝑒𝑛𝑒

=
𝑚𝑒𝜈𝑒𝑖
𝑒2𝑛𝑒

⃗𝐣
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Ohm’s law says 𝐄⃗ = 𝜂 ⃗𝐣, so we derive the resistivity due to collisions:

Spitzer resistivity: 𝜂 =
𝑚𝑒𝜈𝑒𝑖
𝑒2𝑛𝑒

(9.2)

or classical electrical conductivity 𝜎 = 1/𝜂:

electrical conductivity: 𝜎 =
𝑒2𝑛𝑒
𝑚𝑒𝜈𝑒𝑖

(9.3)

Since 𝜈𝑒𝑖 ∝ 𝑛𝑒𝑇−3/2
𝑒 , the collisional resistivity

𝜂 =
𝑚𝑒𝜈𝑒𝑖
𝑒2𝑛𝑒

∝ �
�𝑛𝑒

�
�𝑛𝑒
𝑇−3/2
𝑒

is independent of number of charge carriers, 𝑛𝑒 and decreases with growing 

temperature.

Note that because of the conservation of the total electron momentum, 𝑒−𝑒
collisions do not contribute to the resistivity.
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9.3 Plasma resistivity in Astrophysics

Collisions of electrons with ions (or other species) in the plasma lead to 

resistivity and provide a mechanism for heating. This mechanism is often 

called ohmic heating or Joule heating.

Plasma electric conductivity is usually very high: For many purposes, the 

conductivity of a plasma may be treated as infinite. This leads to frozen-in 

condition.
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9.4 Driecer field

Electric fields parallel to magnetic fields can accelerate charged particles. 

collisions change momentum and energy of particles. So friction-like term 

should appear in equations of motion. Consider 1D equation of electron 

motion:

𝑚𝑑𝑣𝑑𝑡 = 𝑒𝐸 − 𝜈𝑒𝑖𝑚𝑣

There is a critical velocity that sets right hand side to zero. Electrons with 

the velocities larger than the critical are accelerated. The process is called 

electron runaway.

Assuming thermal distribution of electrons, and 𝑣 = 𝑣𝑇𝑒, there is critical 

electric field, called Dreicer field (Dreicer, 1959):

𝐸𝐷 =
𝜈𝑒𝑖(𝑣 = 𝑣𝑇𝑒)𝑚𝑣𝑇𝑒

𝑒 = 𝑒3𝑛 lnΛ
6𝜋𝜖20𝑘𝐵𝑇

(9.4)

Note that the resistivity (9.2) is valid for 𝐸 ≪ 𝐸𝐷.
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9.5 Diffusion of particles

The fluid equation of motion including collisions, say, for electrons:

𝑚𝑒𝑛
𝑑𝐯⃗
𝑑𝑡 = 𝑞𝑛𝐄⃗ − ∇𝑝 −𝑚𝑒𝑛𝜈𝑒𝑖𝐯⃗

where again we assume 𝑛𝑖 = 𝑛𝑒 = 𝑛. We will also assume that 𝜈𝑒𝑖 is a 

constant. We shall consider steady state, so that 𝑑𝐯⃗𝑒/𝑑𝑡 = 0

𝑞𝑛𝐄⃗ − ∇𝑝 −𝑚𝑒𝑛𝜈𝑒𝑖𝐯⃗ = 0

Using 𝑝 = 𝑛𝑘𝐵𝑇 and assuming isothermal plasma

𝑞𝑛𝐄⃗ − 𝑘𝐵𝑇∇𝑛 −𝑚𝑒𝑛𝜈𝑒𝑖𝐯⃗ = 0

so the fluid velocity 𝐯⃗ becomes:

𝐯⃗ =
𝑞𝑛𝐄⃗ − 𝑘𝐵𝑇∇𝑛

𝑚𝑒𝑛𝜈𝑒𝑖
=

𝑞
𝑚𝑒𝜈𝑒𝑖⏟
mobility

𝐄⃗ − 𝑘𝐵𝑇
𝑚𝑒𝜈𝑒𝑖⏟
diffusion

∇𝑛
𝑛
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where 𝜇 = |𝑞|/𝑚𝑒𝜈𝑒𝑖 and 𝐷 = 𝑘𝐵𝑇/𝑚𝑒𝜈𝑒𝑖 are mobility and diffusion coeffi-

cients. These will be different for each species, 𝐷 is measured in [m2/sec]. 

We can write the flux 𝚪⃗:

𝚪⃗ ≡ 𝑛𝐯⃗ = ±𝜇𝑛𝐄⃗ − 𝐷∇𝑛

in case 𝐄⃗ = 0, or particles are not charged we find Fick’s law:

𝚪⃗ = −𝐷∇𝑛 (9.5)

Using continuity equation 𝜕𝑛/𝜕𝑡 + ∇ ⋅ 𝚪⃗ = 0, we can find equation

𝜕𝑛
𝜕𝑡 − ∇𝐷∇𝑛 = 0, (9.6)

which is the diffusion equation.

Hence, the particles diffuse in space because of the collisional scattering.
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9.6 Ambipolar diffusion

Plasma should be quasi-neutral, so the diffu-

sion of electrons and ions should adjust to 

preserve quasi-neutrality. The fast electrons 

have higher thermal velocities and tend to 

leave plasma first. Positive charge is left and 

an electric field is set up as to retard the loss 

of electrons and accelerate the loss of ions. So we set:

𝚪⃗𝑒 = 𝚪⃗𝑖 = 𝚪⃗

or

𝚪⃗ = +𝜇𝑖𝑛𝐄⃗ − 𝐷𝑖∇𝑛 = −𝜇𝑒𝑛𝐄⃗ − 𝐷𝑒∇𝑛

solving for 𝐄⃗, we find:

𝐄⃗ =
𝐷𝑖 − 𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛
𝑛
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so the total flux 𝚪⃗ is

𝚪⃗ = 𝜇𝑖𝑛
𝐷𝑖 − 𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛
𝑛 − 𝐷𝑖∇𝑛 = −

𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

∇𝑛

So similar to (9.5), we have Fick’s law, but with a new coefficient

𝐷𝐴 =
𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

(9.7)

called ambipolar diffusion coefficient, i.e. two kinds of particles tend to have 

a diffusion rate which is intermediate in value to their free diffusion rates.
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9.7 Thermal conduction in plasma

Let us examine plasma with a temperature gradient, i.e. ∇𝑇𝑒 ≠ 0. If the 

plasma is collisional, we expect diffusion motion of electrons:

𝚪⃗ = −𝐷∇𝑛 ∝ 𝑘𝐵𝑇
𝑚𝑒𝜈𝑒𝑖

∇𝑛 (9.8)

Recall that electric current in collisional plasmas is carried predominately 

by the fast electrons in the distribution function, so the energy flux is also 

primarily due to electrons. If more fast electron diffusively move in the 

direction, and more slow electrons move in the opposite direction to have 

zero net current, there will be net energy flux. The energy flux with Spitzer 

thermal conductivity, Spitzer, L., 1956)

𝐐⃗ ∝ −𝑛𝑘𝐵𝑇𝜈𝑒𝑖
∇𝑇 ∝ 𝑇5/2∇𝑇 (9.9)

Note strong plasma temperature dependency and only ln𝑛 dependency via 

Coulomb Logarithm.
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10 Kinetic description of plasmas

LECTURE OUTLINE

• Particle distribution function

• Kinetic equation

• Plasma waves in collisionless plasma
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10.1 Particle distribution function

Figure 10.1:  Differential flux 
spectrum of electrons measured 
in the solar wind Lin et al 1997

There are some phenomena, for which fluid 

(MHD) or single particle description are not ad-

equate. For these we need to consider the ve-

locity (or momentum in relativistic case) distri-

bution function 𝑓(𝐯⃗), (e.g. Fig 10.1). This treat-

ment is called kinetic.

In fluid theory, the dependent variable 𝐮⃗, 𝜌, 𝑝, 
etc are functions of ⃗𝐫 and 𝑡 only. This is possible 

because 𝑓(𝐯⃗) is assumed to be Maxwellian every-

where and therefore can be uniquely specified 

by temperature 𝑇 and number density

𝑛( ⃗𝐫, 𝑡) = ∫𝑓(𝐯⃗, ⃗𝐫, 𝑡)𝑑3𝑣 .
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Alternatively, if 𝑓 is normalised so that ̃𝑓

∫ ̃𝑓(𝐯⃗, ⃗𝐫, 𝑡)𝑑3𝑣 = 1, 𝑓 = 𝑛( ⃗𝐫, 𝑡) ̃𝑓

then ̃𝑓 is the probability to find a particle in the range ( ⃗𝐫, ⃗𝐫 + 𝑑 ⃗𝐫) and (𝐯⃗, 𝐯⃗ +
𝑑𝐯⃗). The function 𝑓 or ̃𝑓 is the function of 7 variables, 𝑓(𝐯⃗, ⃗𝐫, 𝑡) and units 

are [m−3 (m/s)−3]. Maxwellian distribution is

𝑓(𝐯⃗) = 𝑛( ⃗𝐫, 𝑡) 1
(2𝜋𝑘𝐵𝑇/𝑚)3/2

exp (−𝑣
2

𝑣2𝑇
) , (10.1)

where 𝑣𝑇 = (2𝑘𝐵𝑇/𝑚)1/2, 𝑘𝐵 is the Boltzmann constant.

Knowing 𝑓(𝐯⃗, ⃗𝐫, 𝑡), one can calculate 𝑛, 𝑇, etc. taking moments of the distri-

bution function.
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10.2 Example: Energetic particles in the heliosphere

Figure 10.2: Oxygen energy 
distribution. Energetic parti-
cles in the heliosphere origi-
nate from a number of sepa-
rate sources and acceleration 
processes. From NASA Ad-
vanced Composition Explorer 
(ACE) s/c
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10.3 Kinetic equation

Figure 10.3:  The density 
in phase space is conserved 
as the system evolves with-
out collisions.

If we ignore collisions and particle sources/sinks and 

consider a closed system, the distribution function 

obeys Liouville theorem, as a result of which we can 

write

phase-space density conservation ⟺
𝑑𝑓
𝑑𝑡 = 0
(10.2)

where the time derivative is along a trajectory in the 

phase space (𝐯⃗, ⃗𝐫). Taking the derivative

𝑑𝑓
𝑑𝑡 =

𝜕𝑓
𝜕𝑡 +

𝑑 ⃗𝐫
𝑑𝑡 ⋅

𝜕𝑓
𝜕 ⃗𝐫

+ 𝑑𝐯⃗
𝑑𝑡 ⋅

𝜕𝑓
𝜕𝐯⃗

= 0

and derive kinetic equation

𝜕𝑓
𝜕𝑡 + 𝐯⃗ ⋅

𝜕𝑓
𝜕 ⃗𝐫

+ 𝐅⃗
𝑚 ⋅

𝜕𝑓
𝜕𝐯⃗

= 0 (10.3)

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 10 Kinetic description of plasmas 137

If the force 𝐅⃗ is entirely electromagnetic, the equation takes the form

𝜕𝑓
𝜕𝑡 + 𝐯⃗ ⋅

𝜕𝑓
𝜕 ⃗𝐫

+
𝑞
𝑚 (𝐄⃗ + 𝐯⃗ × 𝐁⃗) ⋅

𝜕𝑓
𝜕𝐯⃗

= 0 (10.4)

when the fields 𝐄⃗ and 𝐁⃗ are the average of electric and magnetic fields from 

all the particles in plasma, the equation is called Vlasov equation.

The kinetic equation (10.4) should be completed with the system of Maxwell 

equations to find 𝐄⃗ and 𝐁⃗ from 𝑓.
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10.4 Collisions in kinetic equation

Figure 10.4:  The 
changes in 𝑣 as disap-
pearance of old and ap-
pearance of new par-
ticles, hence uncorre-
lated.

When there are collisions in plasma, 𝑑𝑓/𝑑𝑡 ≠ 0, and 

we include collisions using collision integral - the rate of 

change of 𝑓 due to collisions

𝜕𝑓
𝜕𝑡 +𝐯⃗⋅

𝜕𝑓
𝜕 ⃗𝐫
+ 𝐅⃗
𝑚 ⋅

𝜕𝑓
𝜕𝐯⃗

= 𝑆𝑡(𝑓) = 𝐶(𝑓) = (
𝜕𝑓
𝜕𝑡 )𝐶

(10.5)

This equation is known as Boltzmann equation, 𝑆𝑡 is 

short from ’stoss’, and 𝐶 for collision.

The kinetic equation can be modified to include sources 

or sinks of particles aading terms at the RHS of equa-

tion (10.5).

When there are collisions we need to take into account changes in particle 

density in phase space.
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It could be insightful to look at a simplified form of a collisional integral. 

Sometimes the collision term can be approximated via simple form:

(
𝜕𝑓
𝜕𝑡 )𝐶

=
𝑓𝑒𝑞 − 𝑓

𝜏 (10.6)

where 𝑓𝑒𝑞 is equilibrium distribution (often Maxwellian), 𝜏 is the collision 

time. This is called a Krook collision term.

Then the integral shows that the distribution function 𝑓 relaxes towards 

equilibrium distribution 𝑓𝑒𝑞 over time 𝜏. Indeed, a small perturbation of the 

distribution function 𝑓1 = 𝑓 − 𝑓𝑒𝑞 evolves

𝑑𝑓1
𝑑𝑡 =

𝑓𝑒𝑞 − 𝑓
𝜏 = −

𝑓1
𝜏

and disappears over time 𝜏.
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10.5 Plasma waves in collisionless plasma

As an illustration of the use of the Vlasov equation, we consider electron 

plasma oscillations in a uniform plasma without external fields 𝐁⃗ = 0 and 

𝐄⃗ = 0. Let us consider, in the first order, the perturbation in 𝑓:

𝑓( ⃗𝐫, 𝐯⃗, 𝑡) = 𝑓0( ⃗𝐫, 𝐯⃗, 𝑡) + 𝑓1( ⃗𝐫, 𝐯⃗, 𝑡) + ...

The first order Vlasov equation (10.4)

𝜕𝑓1
𝜕𝑡 + 𝐯⃗ ⋅

𝜕𝑓1
𝜕 ⃗𝐫

+
𝑞
𝑚𝐄⃗1 ⋅

𝜕𝑓0
𝜕𝐯⃗

= 0 (10.7)

where 𝐄⃗1 is the perturbation electric field. Poisson equation 𝜖0∇ ⋅ 𝐄⃗ = 𝑞𝑛:

𝜖0∇ ⋅ 𝐄⃗1 = −𝑒𝑛1 = −𝑒∫𝑓1𝑑3𝑣
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We assume the ions are massive and fixed and the waves are plasma waves 

in x-direction

𝑓1 → 𝑓1 exp(−𝑖𝜔𝑡 + 𝑖𝑘𝑥)
𝐸1 → 𝐸1 exp(−𝑖𝜔𝑡 + 𝑖𝑘𝑥)

then we can write:

−𝑖𝜔𝑓1 + 𝑖𝑘𝑣𝑥𝑓1 =
𝑒
𝑚𝐸1

𝜕𝑓0
𝜕𝑣𝑥

(10.8)

𝜖0𝑖𝑘𝐸1 = −𝑒∫𝑓1𝑑3𝑣 (10.9)

combining (10.8,10.9) we obtain

1 = − 𝑒2
𝑘𝑚𝜖0

∫
𝜕𝑓0
𝜕𝑣𝑥

𝑑3𝑣
𝜔 − 𝑘𝑣𝑥

= (10.10)

= − 𝑒2
𝑘𝑚𝜖0

∫
+∞

−∞
𝑑𝑣𝑧∫

+∞

−∞
𝑑𝑣𝑦∫

∞

−∞

𝜕𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝜔 − 𝑘𝑣𝑥

. (10.11)

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 10 Kinetic description of plasmas 142

If 𝑓0 is a maxwellian, the integration over 𝑣𝑧, 𝑣𝑦 can be carried out

𝑓0(𝑣𝑥) = 𝑛0
1

(2𝜋𝑘𝐵𝑇/𝑚)1/2
exp (−

𝑚𝑣2𝑥
2𝑘𝑏𝑇

) (10.12)

taking normalised function ̃𝑓0 = 𝑓0/𝑛0, we find

1 =
𝜔2𝑝𝑒
𝑘2 ∫

+∞

−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘

which is the equation for the dispersion relation, 𝜔(𝑘).
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11 Electron plasma waves and Landau damping

LECTURE OUTLINE

• Electron plasma waves and Landau damping

• Dispersion relation for Langmuir waves

• Physics of Landau damping
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11.1 Dispersion relation for electron plasma waves

Let us consider the dispersion relation from the last lecture:

1 =
𝜔2𝑝𝑒
𝑘2 ∫

+∞

−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 (11.1)

To find 𝜔(𝑘), we need to evaluate the integral.

However, the integral in equation (11.1) is not easy to evaluate because of 

the singularity 𝑣𝑥 = 𝜔/𝑘.
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11.2 Landau rule

Figure 11.1:  The integration is be-
low the pole at 𝑣𝑥 = 𝜔/𝑘

Let us split the integral in equation (11.1) 

into three parts. Landau (1946) suggested 

the rule for avoiding the poles (adding small 

positive imaginary part):

𝜔 → 𝜔 + 𝑖0

and will integrate along the path shown Figure 11.1, where 𝑣𝑥 is a real part 

of complex variable 𝑧. As shown in Figure (11.1), the integral can be written 

as the sum:

+∞

∫
−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 =

𝑣𝑥−𝜔/𝑘−𝜌

∫
−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 +

+∞

∫
𝑣𝑥−𝜔/𝑘+𝜌

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 +∫

𝐶

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑧

𝑧 − 𝜔/𝑘

(11.2)

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 11 Electron plasma waves and Landau damping 146

The third integral is taken along the semi-circle of radius 𝜌 → 0 in the complex 

plane (Figure 11.1). Using complex number substitute 𝑧 = 𝜔/𝑘 + 𝜌𝑒𝑖𝜙

lim
𝜌→0

∫
𝐶

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑧
𝑧 − 𝜔/𝑘 = lim

𝜌→0

2𝜋

∫
𝜋

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑖𝜌𝑒𝑖𝜙𝑑𝜙
𝜌𝑒𝑖𝜙

= 𝑖𝜋
𝜕 ̃𝑓0
𝜕𝑣𝑥

|
|
|𝑣𝑥=𝜔/𝑘

In the limit 𝜌 → 0, the first two integrals in Equation (11.2) give the Cauchy 

principal value of the integral. Hence we have :

+∞

∫
−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 = PV∫

+∞

−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 + 𝑖𝜋

𝜕 ̃𝑓0
𝜕𝑣𝑥

|
|
|𝑣𝑥=𝜔/𝑘

, (11.3)

where PV denotes the principal value of the integral.

Using the integral with Landau rule applied (equation 11.3), the dispersion 
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relation can written:

1 =
𝜔2𝑝𝑒
𝑘2 (PV∫

+∞

−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘 + 𝑖𝜋

𝜕 ̃𝑓0
𝜕𝑣𝑥

|
|
|𝑣𝑥=𝜔/𝑘

) (11.4)

where we have both real (first term) and imaginary (second term) parts.
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11.3 Real part of the dispersion relation

The integral in the real part of Equation (11.4) can be evaluated by integration 

by parts

PV∫
+∞

−∞

𝜕 ̃𝑓0
𝜕𝑣𝑥

𝑑𝑣𝑥
𝑣𝑥 − 𝜔/𝑘𝑥

=
̃𝑓0

𝑣𝑥 − 𝜔/𝑘
|
|
|

+∞

−∞
+ PV∫

+∞

−∞

̃𝑓0𝑑𝑣𝑥
(𝑣𝑥 − 𝜔/𝑘)2

, (11.5)

where the first term on the right hand side is zero and we only need to 

evaluate the second integral.

We can assume large phase velocities, i.e. 𝜔/𝑘 ≫ 𝑣𝑥, then we can expand 

(𝑣𝑥 − 𝜔/𝑘)−2:

(𝑣𝑥 − 𝜔/𝑘)−2 = (𝜔𝑘)
−2
(1 −

𝑘𝑣𝑥
𝜔 )

−2
= (𝜔𝑘)

−2
(1 + 2

𝑘𝑣𝑥
𝜔 + 3

𝑘2𝑣2𝑥
𝜔2 +…)

Taking real integral (11.5) with the expansion

PV∫
+∞

−∞

̃𝑓0𝑑𝑣𝑥
(𝑣𝑥 − 𝜔/𝑘)2

= (𝜔𝑘)
−2

PV∫
+∞

−∞

̃𝑓0 (1 + 2
𝑘𝑣𝑥
𝜔 + 3

𝑘2𝑣2𝑥
𝜔2 +…)𝑑𝑣𝑥

Astronomy 345: Plama Theory and Diagnostics II



Lecture: 11 Electron plasma waves and Landau damping 149

The odd terms in 𝑣𝑥 will vanish and ∫ ̃𝑓0𝑣2𝑥𝑑𝑣𝑥 is just the variance.

Since ̃𝑓0 is Maxwellian (from Equation 10.12) ∫ ̃𝑓0𝑣2𝑥𝑑𝑣𝑥 = 𝑘𝐵𝑇/𝑚. Then we 

can write:

1 =
𝜔2𝑝𝑒
𝑘2 [(𝜔𝑘)

−2
(1 + 3𝑘

2𝑘𝐵𝑇
𝑚𝜔2 )] =

𝜔2𝑝𝑒
𝜔2 (1 + 3𝑘

2𝑘𝐵𝑇
𝑚𝜔2 )

if the thermal correction is small, we can replace 𝜔2 by 𝜔2𝑝𝑒 in the second 

term.

Hence we find

𝜔2(𝑘) = 𝜔2𝑝𝑒 + 3𝑘
2𝑘𝐵𝑇
𝑚 (11.6)

which is the dispersion relation for Langmuir waves. These waves are 

sometimes called electron plasma oscillations.
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11.4 Phase and group speeds of Langmuir waves

The frequency of these waves is near 𝜔𝑝𝑒, the phase speed is 𝑣𝑝ℎ = 𝜔/𝑘 ≃
𝜔𝑝𝑒/𝑘. The group speed can be calculated approximating 𝜔(𝑘) ≃ 𝜔𝑝𝑒(1 +

3𝑘
2𝑘𝐵𝑇

2𝑚𝜔2
𝑝𝑒
):

𝜕𝜔
𝜕𝑘 ≃ 3𝑘𝑘𝐵𝑇𝑚𝜔𝑝𝑒

≃ 3𝑘𝐵𝑇𝑚
1
𝑣𝑝ℎ

≃ 3𝑣𝑇𝑒
𝑣𝑇𝑒
𝑣𝑝ℎ

which is of the order of (or smaller than) 𝑣𝑇𝑒 but ≠ 0. Because of the 

relatively small group velocity, Langmuir waves (electron plasma waves) are 

called ’oscillations’ or electron plasma oscillations.

Langmuir waves are frequently observed in space plasmas, e.g. solar wind 

(Figure 11.2), ionosphere, magnetosphere of the Earth and other planets.
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Figure 11.2: The bursty 
narrow band emission near 
23 KHz (solar wind electron 
plasma frequency 𝑓𝑝𝑒 ≃
23 kHz) are the Langmuir 
waves responsible for gener-
ation of type III solar radio 
emission. From Gurnett et 
al, 1993
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11.5 Landau damping

Let us now consider the imaginary part in Equation (11.4). For simplicity, let 

us ignore the thermal correction in the real part, so Langmuir wave dispersion 

relation 𝜔(𝑘) ≃ 𝜔𝑝𝑒, then we have

1 =
𝜔2𝑝𝑒
𝜔2 + 𝑖𝜋

𝜔2𝑝𝑒
𝑘2

𝜕 ̃𝑓0
𝜕𝑣𝑥

|
|
|𝑣𝑥=𝜔/𝑘

hence

𝜔2 = 𝜔2𝑝𝑒 (1 − 𝑖𝜋
𝜔2𝑝𝑒
𝑘2

𝜕 ̃𝑓0
𝜕𝑣𝑥

|
|
|𝑣𝑥=𝜔/𝑘

)
−1
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Assuming the imaginary part is small, we find the dispersion relation 

with the imaginary term

𝜔(𝑘) ≃ 𝜔𝑝𝑒 + 𝑖𝛾𝑘 = 𝜔𝑝𝑒 + 𝑖𝜔𝑝𝑒
𝜋
2
𝜔2𝑝𝑒
𝑘2

𝜕 ̃𝑓0
𝜕𝑣𝑥

|
|
|𝑣𝑥=𝜔/𝑘

(11.7)

where the imaginary part 𝛾𝑘 is the Landau damping rate.
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11.6 Landau damping in Maxwellian plasma

Let us consider Maxwellian plasma with distribution from Equation (10.12) 

(considering 1D perturbation and 𝑣𝑥 = 𝑣 hereafter)

̃𝑓0(𝑣𝑥) = (𝜋𝑣2𝑇𝑒)−1/2 exp (−
𝑣2

𝑣2𝑇𝑒
) ,

where 𝑣𝑇𝑒 = √2𝑘𝐵𝑇/𝑚. Then the derivative 𝜕 ̃𝑓0(𝑣𝑥)/𝜕𝑣𝑥 follows

𝜕 ̃𝑓0
𝜕𝑣𝑥

= − 2𝑣
𝑣2𝑇𝑒

(𝜋𝑣2𝑇𝑒)−1/2 exp (−
𝑣2

𝑣2𝑇𝑒
) = − 2𝑣

√𝜋𝑣3𝑇𝑒
exp (− 𝑣2

𝑣2𝑇𝑒
)

Using 𝑣 = 𝜔/𝑘, the damping rate from 11.7 is (note that the thermal cor-

rection from Langmuir wave dispersion 11.6 is retained in the exponent 
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only)

𝛾𝑘 ≃ √𝜋𝜔𝑝𝑒 (
𝜔𝑝𝑒
𝑘𝑣𝑇𝑒

)
3
exp (−𝜔

2(𝑘)
𝑘2𝑣2𝑇𝑒

) ≃ (11.8)

√𝜋𝜔𝑝𝑒 (
𝜔𝑝𝑒
𝑘𝑣𝑇𝑒

)
3
exp (−

𝜔2𝑝𝑒
𝑘2𝑣2𝑇𝑒

) exp (−32) ≃ (11.9)

≃ 0.22√𝜋𝜔𝑝𝑒(𝑘𝜆𝐷𝑒)−3 exp (−
1

2𝑘2𝜆2𝐷𝑒
) (11.10)

where we used that 𝜔2𝑝𝑒 = 𝑒2𝑛/(𝜖0𝑚𝑒) and 𝜆2𝐷𝑒 = 𝜖0𝑘𝐵𝑇/𝑛𝑒2, 𝑣2𝑇𝑒/2 =
𝑘𝑏𝑇/𝑚𝑒 = 𝜆2𝐷𝑒𝜔2𝑝𝑒.

Hence Langmuir waves should be strongly absorbed in Maxwellian plasma 

(without collisions) for 𝑘𝑣𝑇𝑒 ≳ 𝜔𝑝𝑒. Langmuir Waves with 𝑘𝑣𝑇𝑒 ≪ 𝜔𝑝𝑒 are 

weakly damped.
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11.7 Resonance condition

Figure 11.3: The resonant condition is when the wave has zero frequency in the rest 
frame of particle 𝜔(𝑘) = 𝑘𝑣𝑥. This resonance is called Cherenkov resonance.
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11.8 Physics of Landau damping

The expression for Landau damping (11.7) 

says that there is no wave energy loss/gain 

when 𝜕𝑓/𝜕𝑣 = 0. Electrons with 𝑣 + Δ𝑣
give energy to the wave 𝑣 = 𝜔/𝑘 and the 

electrons 𝑣−Δ𝑣 take anergy from the wave 

. If there is larger number of electrons at 

𝑣−Δ𝑣, i.e. 𝜕𝑓/𝜕𝑣 < 0, the larger number of the electrons will be accelerated 

then decelerated and hence the wave energy is absorbed by the particles.

When 𝜕𝑓/𝜕𝑣 > 0, the larger number of electron is at 𝑣+Δ𝑣, so the electrons 

will, on average, lose the energy to the wave and there is a transfer of energy 

from the particles to the electric field or wave growth. Note that there is no 

phase in the expression for the resonance 𝑣 = 𝜔/𝑘.
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11.9 Landau damping and generation of waves

The damping is not randomisation by collisions, but 

a resonant 𝑣 = 𝑣𝑝ℎ = 𝜔/𝑘 transfer of energy from 

waves to particles in collisionless plasma. It can be 

reversed if 𝜕 ̃𝑓0/𝜕𝑣𝑥 > 0.

Such resonant interaction (i.e. the phase velocity of 

waves is the same as velocity of interacting particles) 

appears for other plasma waves, not only Langmuir waves considered. Ions 

can also resonantly interact with plasma waves via such mechanism. The 

Landau damping is an example of wave-particle interactions, which play the 

key role in collisionless plasma.
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11.10 Example: electrons and Langmuir waves in the solar wind

Figure 11.4: Langmuir 
waves in solar wind (solar 
wind electron plasma fre-
quency 𝑓𝑝𝑒 ≃ 20 kHz) 
associated with solar en-
ergetic electrons near the 
Earth. Figure from Krucker 
et al, 2007

Langmuir waves play an important role in solar radio emission.
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