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1 Introduction to High Energy Astrophysics

LECTURE OUTLINE

• Intended learning outcomes

• Recommended literature

• History of X-rays

• Classification and key terminology

Astronomy 345: High Energy Astrophysics I
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1.1 Course aims

• To introduce students to the physical processes responsible for X-
Ray production, as a basis for the applications discussed in X-Ray 

Astrophysics II

• To introduce students to the concept of a reaction cross-section, and 

to explain how to calculate X-Ray emission rates and spectra from 

specified source conditions

Further details are also available in Course Handbook

Astronomy 345: High Energy Astrophysics I
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1.2 Recommended literature and useful resources:

These lecture notes are following the material from:

Malcolm S. Longair, High energy astrophysics, vol-
ume 1 & 2, High energy astrophysics, 1992, UofG 

Library link or e.g. Amazon

Astronomy 345: High Energy Astrophysics I
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1.3 A Brief History of X-rays

Wilhelm Roentgen

• Oct 1895 Wilhelm Roentgen begins to study 

Cathode Rays (discovered decades earlier)

• 8 Nov 1895 Roentgen notices glowing flu-
orescent screen some distance away from 

cathode ray tube - realises he has discov-
ered a new phenomenon: X-rays

• 22 Dec 1895 Roentgen photographs his 

wife’s hand - The first X-Ray Picture

Astronomy 345: High Energy Astrophysics I
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First X-ray Picture

Print of Wilhelm Rontgen’s first X-ray, 
of his wife’s hand, taken on 22 De-
cember 1895 and presented to Ludwig 

Zehnder of the Physik Institut, Univer-
sity of Freiburg, on 1 January 1896

Astronomy 345: High Energy Astrophysics I
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X-ray timeline:

• 28 Dec 1895 Discovery announced at Wurzburg Physico-Medical Soci-
ety

• 4 Jan 1896 Discovery announced at Berlin Physical Society

• Jan 1896 Discovery published in newspapers around the world

• 2 Mar 1896 Henri Becquerel discovers natural radioactivity of Uranium

Astronomy 345: High Energy Astrophysics I
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1.4 From the past till now

• 1901 First ever Nobel Prize in Physics awarded to Roentgen

• 1903 Third Nobel Prize in Physics awarded to Becquerel, Pierre and 

Marie Curie

• ...

• 1999 Launch of CHANDRA and XMM X-ray satellites

• 2002 Launch of RHESSI X-ray and gamma-ray satellite

• 2008 Launch of Fermi X-ray and gamma-ray satellite

• 2012 Launch of NuSTAR X-ray satellite by NASA

• February 2020 Solar Orbiter with STIX X-ray imager

Astronomy 345: High Energy Astrophysics I
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1.5 X-ray Region of Electromagnetic Spectrum

Figure 1.1:  Image of Crab nebula at different wavelengths/frequencies  Chandra, Harvard
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X-ray wavelength �:
0.01nm ≲ � ≲ 10nm

0.1 Å ≲ � ≲ 100Å

where 1nm = 10−9 m, 1Å = 10−10 m.

Corresponding photon energy:

E = ℎ� = ℎc
�
= 6.63 × 10−34 × 3 × 108

1.6 × 10−19� [m]
[eV] = 12.4

� [Å]
[keV]

will be in the range
0.12 keV ≲ E ≲ 120 keV

where 1 eV = 1.602 × 10−19 J.

1 keV = 103 eV, 1 MeV = 106 eV, 1 GeV = 109 eV, 1 TeV = 1012 eV

Astronomy 345: High Energy Astrophysics I
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1.6 Classification/terminology

 Energy range  Wavelength range

Soft X-rays 0.1 − 1 keV ∼ 100 − 10Å
Classical X-rays 1 − 10 keV ∼ 10 − 1Å
Hard X-rays 10 − 100 keV ∼ 1 − 0.1Å
Gamma-rays (
-rays) ≳ 0.1 MeV ≲ 0.1Å

Note that the classification/terminology is somewhat different in various areas 

of Astrophysics.

Energy ⟺ Temperature:

E ≃ kBT ⟹ 1keV ≃ 107K

where kB = 1.38 × 10−23 J/K Boltzmann constant.

Hence to produce X-rays we need very high temperatures!

Astronomy 345: High Energy Astrophysics I
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1.7 X-ray and atmosphere

Only a few windows in the E-M spectrum exist for ground-based observations: 
optical and radio (see Figure 1.2).

Figure 1.2: X-ray and gamma-ray penetration 
via atmosphere

Space-based observations opened 

up rest of E-M Spectrum.

Classical X-rays:
∙ These are readily absorbed (pho-
toelectric absorption) by gases, liq-
uids and solids
∙ Unable to penetrate the Earth’s at-
mosphere
∙ Observations must be made at al-
titudes above 100 km using rockets 

or satellites
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Hard X-rays:
∙ More penetrating than classical X-
rays. Observations can be made from e.g. balloon platforms at ∼ 30 km 

altitude

Soft X-rays:
∙ Much weaker flux than classical or hard X-rays. Strongly attenuated by 

interstellar gas in the galaxy

Astronomy 345: High Energy Astrophysics I
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1.8 Useful wavelength range for Astronomy

Useful range for obtaining astronomical information:

10−21m ≲ � ≲ 104m

• For � ≲ 10−21m  (Energy ≳ 1015 eV), 
-rays readily destroyed by 

collisions with CMBR photons, producing electron-positron pairs

• For � ≳ 104m , radio waves are absorbed by solar wind plasma (cut-off 
frequency near Earth ∼ 20 kHz) . Earth ionosphere produces cut-off 
near 10 MHz

Astronomy 345: High Energy Astrophysics I
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1.9 Luminosity of a bright X-ray star

Scorpius X-1 delivers roughly 106 m−2 s−1 classical X-ray photons to the 

Earth.

Since the typical energy of classical X-ray photon

EX1 = 5keV = 8 × 10−16J ,

the energy flux is

FX1 = 8 × 10−16 × 106 = 8 × 10−10W/m 2

Given the distance D = 2800 pc [recall 1 pc=3.1 × 1016 m]

Luminocity: LX1 = 4�D2F = 4�(9 × 1019)2 × 8 × 10−10W ≃ 8 × 1031W

hence, recalling that L⊙ ≃ 4 × 1026 W

LX1 ≃ 105L⊙
Astronomy 345: High Energy Astrophysics I
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Bright X-ray sources in our galaxy similar to Sco X-1 include:

• compact binaries

• supernova remnants

But these are sparse. The Galaxy contains only 100 X-ray sources with 

L > 1028 W.

Taking as a typical luminosity of a bright X-ray source L ∼ 1031 W, the total 
X-ray luminosity for the galaxy

LX ∼ 1033W

Let us compare this with the total bolometric luminosity of stars

Lbol ∼ 1011stars × 4 × 1026W ∼ 4 × 1037W

So X-ray emission is only∼ 0.01 % of the bolometric luminosity of the Milky 

Way - i.e. we are not (any more) an active galaxy

Astronomy 345: High Energy Astrophysics I
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2 Observing X-rays in Astrophysics

LECTURE OUTLINE

• Past, present and future high energy observations

• Astrophysical objects at high energies

• X-ray and gamma ray observation techniques: grazing incidence optics, 
collimators

• X-ray spectroscopy

Astronomy 345: High Energy Astrophysics I
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2.1 X-ray Astronomy observations from Space

Rocket experiments started with captured German V2 rockets. (Although the 

flight lasted for only a few minutes)

• 1948 Solar X-rays detected (from the solar corona)

• 1962 Bright X-ray source discovered in Scorpius; star denoted Sco X-1

• 1963 Isotropic X-ray background discovered; Extragalactic Sources; 
X-ray source detected in Crab Nebula

• 1966 X-ray galaxies identified

Astronomy 345: High Energy Astrophysics I
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2.2 Satellite Missions

Since 1970 till present day large number of satellites launched to observe 

various astrophysical objects in X-rays e.g. ROSAT, Yohkoh, SoHo, XMM, 
Chandra, RHESSI,...

Main observational results:

∙ Huge numbers of sources detected (e.g. 60000 by ROSAT; > 10 times more 

by XMM, Chandra)

∙ Many X-ray binaries identified (e.g. Cygnus X-1, black hole candidate)

∙ Detailed observations of solar flares, pulsars, quasars, galaxy clusters, 
supernova, galaxies, moon, comets...

Astronomy 345: High Energy Astrophysics I
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Figure 2.1: ROSAT X-ray bright sources see ROSAT webpage

Astronomy 345: High Energy Astrophysics I
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Figure 2.2: All sky map of gamma-ray counts above 1 GeV from  NASA Fermi data
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Figure 2.3: Abell galaxy cluster by  Chandra X-ray observatory
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Figure 2.4: X-ray jet blasting out of the nucleus of M87  Chandra
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Figure 2.5:  X-ray image of Crab nebula from  Chandra, Harvard
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Figure 2.6: GOES soft X-ray flux from the Sun. [Image from NOAA Space Weather Prediction 
Center] REAL-TIME soft X-rays from the Sun
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Figure 2.7: SDO and RHESSI ob-
servations of a solar flare: ∼ 106 K 
corona plasma (yellow), 10 keV X-ray 
(red), > 30 keV X-rays (blue) from 
Astronomy & Astrophysics
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Figure 2.8: X-rays are produced by fluorescence when solar X-rays bombard Moon  Chandra, 
Harvard
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2.3 Athena (due for launch in early 2030s)

Figure 2.9:  Athena mission, Athena webpage

Athena (Advanced Telescope 

for High ENergy Astrophysics) 
is the X-ray observatory mis-
sion selected by ESA to ad-
dress the Hot and Energetic 

Universe scientific theme.

Athena (Fig. 2.9) will con-
sist of a single large-aperture 

grazing-incidence X-ray tele-
scope, utilizing a novel tech-
nology (High-performance Si 

pore optics), with 12 m focal length and 5 arcsec HEW on-axis angular resolu-
tion.

Astronomy 345: High Energy Astrophysics I
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2.4 Grazing Incidence Optics

Figure 2.10:  Grazing Incidence Optics

For low energy photons E <
10 keV, Grazing Incidence Op-
tics can be used. Series of 
nested surfaces of highly conduct-
ing material (e.g. Cu), so that 
X-ray photons reflected for large 

incidence angles Grazing Inci-
dence (Fig. 2.10).

Limited angular resolution (but 
improving all the time, e.g. XMM 

Newton: 5 arcsec resolution (Fig 2.11); also X-ray spectra)

Works OK but only up to a few tens of keV.

Astronomy 345: High Energy Astrophysics I
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Figure 2.11: XMM Newton X-ray optics.

Astronomy 345: High Energy Astrophysics I
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2.5 Mechanical collimators

Figure 2.12:  Mechanical collimator

Mechanical collimators block X-rays 

from unwanted parts of the sky.

The layout of a simple X-ray telescope 

of the type flown on the UHURU and 

Ariel-V satellite is shown in Fig 2.12.

Angle � gives angular resolution of 
such telescope.

Proportional counters are used as 

detectors (see Figure 2.12) shielded 

by anti-coincidence detectors.

Astronomy 345: High Energy Astrophysics I
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2.6 Rotating modulating collimators

Figure 2.13: Rotating modulating col-
limator. Two grids modulate incoming 
photon flux.

For example,  Ramaty High Energy Solar Spectroscopic Imager (RHESSI) 
satellite detectors look at the source through a pair of grids called Rotating 

Modulating Collimator (RMC).

Astronomy 345: High Energy Astrophysics I
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As spacecraft spins about once every ∼ 4 sec, artificial modulation of incoming 

X-ray flux appears in the detectors.

Figure 2.14: Modulation of incoming X-ray flux from a point source using Rotating Modulat-
ing Collimator (see Fig 2.13).

Astronomy 345: High Energy Astrophysics I
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2.7 RHESSI

Figure 2.15: RHESSI grids see Hur-
ford et al, 2002 for details. Modulation 
using RMC see Figure 2.13.

RHESSI is designed to investigate particle acceleration and energy release in 

solar flares through imaging and spectroscopy of hard X-ray and gamma-rays 

in the range from 3 keV up to 17 MeV (Lin et al 2002).

Astronomy 345: High Energy Astrophysics I
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RHESSI has 9 Ge detectors (see Fig 2.16) and rotating modulating collimators 

allowing angular resolution down to 2.3 arcsec.

Figure 2.16: RHESSI has 9 RMCs for 9 detectors Slats/Slits spacing growing with detector 
(RMC) number angular resolution from  2.3 arcsec (RMC #1) to 180 arcsec (RMC #9)

Astronomy 345: High Energy Astrophysics I
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2.8 Germanium detectors X-ray spectroscopy

Hard X-ray photon interacting in the cooled 

semiconductor crystal (e.g. Germanium) re-
leases one or more energetic electrons, which 

lose energy by creating free electron-hole pairs. 
The electrons and holes pulled to each elec-
trode by high voltage, creating a current pulse 

proportional to the photon energy. The cur-
rent pulse is amplified and digitized by suitable 

electronics.
For example, RHESSI spacecraft observes so-
lar photons from 3 keV to 17 MeV using cooled 

coaxial germanium detectors.
Figure 2.17: RHESSI response matrices. Sample re-
sponses at 50, 350 and 2500 keV Smith et al, 2002 for 
details. Modulation using RMC see Figure 2.13.

Astronomy 345: High Energy Astrophysics I
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3 X-ray emission mechanisms, Black-body emission

LECTURE OUTLINE

• Introduction into high energy emission mechanisms

• Thermal radiation, optical depth, bremsstrahlung, inverse Compton 

scattering, synchrotron radiation

• Black-body emission, X-ray spectrum

Astronomy 345: High Energy Astrophysics I



Lecture: 3 X-ray emission mechanisms, Black-body emission 39

3.1 Thermal Mechanisms

Figure 3.1: Maxwellian velocity distribution

Hot gas (plasma) in thermal equi-
librium has a Maxwellian distribu-
tion of velocities:

f(v) ∼ v2 exp (− mv2
2kBT

)

For X-rays, say 1 keV we have

T ∼ 107K

We can have 2 regimes: optically 

thick, optically thin.

Astronomy 345: High Energy Astrophysics I
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3.2 Optical depth

Optical depth, � gives a measure of how opaque a medium is to radiation 

passing through it.

Recall definition of optical depth from Astronomy 2. The intensity1 of radiation

I(�) = I0 exp(−�), � ∝ 1
lmfp

where lmfp is the mean free path of a photon between collisions, I0 is the 

intensity before absorption or scattering.

• � ≪ 1 - optically thin

• � ≫ 1 - optically thick

1Recall that intensity I is the energy emitted from a source surface element dA at position r⃗, into solid angle 
dΩ in time interval between t and t + dt, i.e. dE = I(r⃗)dAdΩdt; Specific intensity, I� is the intensity in 
the frequency range � and � + d�, i.e. dE = I�(r⃗)dAdΩdtd�

Astronomy 345: High Energy Astrophysics I
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3.3 Optically Thick and Thin Sources

Depending on optical depth within the emitting source, we distinguish:

Optically thick case:
Photons interact with, and are in thermal equilibrium with, hot gas e.g. black-
body radiation

Optically thin case:
Gas does not appreciably absorb its own radiation. Observed spectrum of 
X-rays is same as spectrum during their production.

Astronomy 345: High Energy Astrophysics I
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3.4 Bremsstrahlung

Figure 3.2:  Bremsstrahlung (free-free) emission in 
Hydrogen plasma. X-rays produced by free-free 
transitions of electrons also known as (thermal) 
bremsstrahlung (a.k.a ‘braking radiation’)

Bremsstrahlung radiation could 

be due to either non-thermal 
electrons or thermal elec-
trons, hence we distinguish 

thermal and non-thermal
bremsstrahlung.

Astronomy 345: High Energy Astrophysics I
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3.5 Non-Thermal bremsstrahlung

Emission of radiation by electrons with a Non-Maxwellian distribution of ener-
gies is called Non-thermal bremsstrahlung.

Usually a power-law energy distribution is a good model for non-thermal 
particles:

f(E) = CE−�

where f(E)dE is fraction (or number) of particles with energy between E and 

E + dE and C and � are constants.

So that the number density is

Total number (or number density) = ∫
∞

0
f(E)dE

Astronomy 345: High Energy Astrophysics I
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3.6 Inverse Compton Scattering

Figure 3.3:  Inverse Compton scattering

Inverse Compton Scattering ⟺ A low 

energy photon collides with a relativistic 

electron and gains energy at the expense 

of the electron (e.g. radio photons might 
be boosted to X-ray energies)

For Inverse Compton scattering: E′ <
E and �′ > �

For Compton scattering: E′ > E and 

�′ < �

For example, in the standard model of 
AGN, hot material forms above the accretion disc and can inverse-Compton 

scatter photons up to X-ray energies.

Astronomy 345: High Energy Astrophysics I
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3.7 Synchrotron Radiation

Figure 3.4:  Synchrotron Radiation

Synchrotron Radiation ⟺ Emis-
sion of radiation by relativistic elec-
trons spiralling in a magnetic field.

Radiation is normally forward beamed 

and strongly polarised (generally 

only synchrotron has this prop-
erty)

For example, synchrotron radiation is 

responsible for X-ray emission from supernova remnants (e.g. Crab Nebula) 
and possibly X-ray continuum emission of quasars.

Astronomy 345: High Energy Astrophysics I
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3.8 X-ray spectra shape

Figure 3.5:  Typical X-ray spectra.

Power law X-ray spectrum may be 

generated by:

• Synchrotron radiation

• Inverse Compton

• Collisional bremsstrahlung

Spectrum which falls exponentially at 
high energies ⟹ thermal.

Many galactic sources appear to 

be thermal (Fig 3.7, 3.8), but other 
sources e.g. Crab Nebula (Fig 3.6) gives a power law spectrum.

Astronomy 345: High Energy Astrophysics I
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3.9 Examples of X-ray spectra

Figure 3.6:  The Crab nebula spectrum in the 1 keV - 10 MeV energy interval adopted from 
Kuiper, L. et al, 2001

Astronomy 345: High Energy Astrophysics I
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Figure 3.7: Simulated X-ray spectra of solar flare plasma thermal emission for a range of 
plasma temperatures from 10 to 50 MK, from Skinner et al, 2013

Astronomy 345: High Energy Astrophysics I
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Figure 3.8: Extended hard-X-ray emission from XMM-Newton and NuStar in the 
inner few parsecs of the Galaxy, from Perez et al, 2015

Astronomy 345: High Energy Astrophysics I
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Figure 3.9: Typical full-Sun flare X-ray spectrum. Dashed: non-thermal spectrum, Dotted: 
Thermal spectrum, from a plasma with temperature T = 20 MK, adopted from Holman et al, 
2011

Astronomy 345: High Energy Astrophysics I
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3.10 Black-body emission

Figure 3.10:  Black-body spec-
tra

For Main Sequence stars, the peak of the black 

body curve lies in, or close to, the visible part of 
the E-M spectrum. For X-ray sources, peak lies 

at X-ray wavelengths. From Wien’s law:

�maxT = 2.9 × 10−3 (3.1)

where �max [m], T [K]. For T ≃ 107 K, we find 

�max ≃ 3 Å, e.g. classical X-rays.

Planck Spectrum characterised by:
∙ Temperature of the source
∙ Isotropic emission
∙ Unpolarised radiation

Astronomy 345: High Energy Astrophysics I
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3.11 Plank spectrum

Expressing Planck spectrum as a function of frequency:

I� =
2ℎ�3

c2 [exp ( ℎ�
kBT

) − 1]
(3.2)

where I� is the specific intensity.

Limiting cases: For ℎ� ≪ kBT, exp ( ℎ�
kBT

) − 1 ≃ ℎ�
kBT

 and

I� ∝ �2 ⟸ Rayleigh-Jeans approximation (3.3)

For ℎ� ≫ kBT, exp ( ℎ�
kBT

) − 1 ≃ exp ( ℎ�
kBT

) and

I� ∝ �3 exp (− ℎ�
kBT

) ⟸ Wien approximation (3.4)

Astronomy 345: High Energy Astrophysics I
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Figure 3.11: Planck spectrum (Eq 3.2) and limiting cases (3.3, 3.4).

Astronomy 345: High Energy Astrophysics I
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3.12 Stefan-Boltzmann Law

Integrating the spectrum (3.2) over all frequencies, bolometric luminos-
ity radiated per unit area from a black body becomes:

Lbol = �T4, (3.5)

where � = 5.67 × 10−8 Jm−2s−1K−4 is Stefan-Boltzmann constant.

Black body radiation energy density:

Urad = aT4 (3.6)

where a = 4�
c
= 7.56 × 10−16 Jm−3K−4 is Stefan constant.

Astronomy 345: High Energy Astrophysics I
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3.13 Black body emission from astrophysical objects

Consider a spherical mass, M, of radius, R, made of ionised hydrogen - dense 

enough to be optically thick, and hence emitting black body radiation, with 

T ≃ 107 K.

Suppose that T is uniform throughout the mass.

Thermal energy of the source is

E = 3NkBT

where N is the number of electrons (or protons).

Surface luminosity (e.g. power emitted) is

L = 4�R2�T4

Astronomy 345: High Energy Astrophysics I
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Cooling time (using that N = M∕mp, where mp is the proton mass)

� ≃ E
L = 3kMT

4�R2�mpT4

It can be shown that the cooling time

� =
(140sec ) × ( M

M⊙
)

( R
R⊙
)
2

×
( T
107K

)3

and the Luminosity

L = 3.5 × 1039W × ( RR⊙
)
2

× ( T
107K

)
4

Astronomy 345: High Energy Astrophysics I
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and hence, for T = 107 K and M = M⊙:

R = R⊙ ⟹� = 140sec ; L = 1013L⊙
R = 3 × 10−3R⊙ ⟹� = 6months ; L = 108L⊙

R = 10−5R⊙ ⟹� = 4 × 104years ; L = 103L⊙
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3.14 Short and long-lived objects

Black body X-ray sources possible, with M = M⊙, are:

• Small (R ≪ R⊙) long-lived compact objects

• Large (R ∼ R⊙) transient (short-lived) objects
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3.15 Black body emission from astrophysical objects

Figure 3.12:  NASA artist’s impression of 
accretion disk

In both cases (short and long-lived), we 

require high (or very high) luminosities, 
i.e. a source where energy is constantly 

supplied to maintain the luminosity ⟹
e.g. Dense accretion disk in an X-ray 

binary, see examples of X-ray spectra in 

Figures 3.13,3.14.

Also possible are very small, short lived 

sources with - e.g. X-ray bursts from the 

thermonuclear flash as newly accreted 

gas rich in hydrogen and helium reaches 

the neutron star surface.
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Figure 3.13: Swift/XRT 
and NuSTAR spectrum 
(fitted with black-body) of 
the Supergiant Fast X-ray 
Transient IGR J17544-2619 
from Tomsick et al, 2015
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Figure 3.14: Unfolded NuS-
TAR (black) and Swift (red) 
spectra from Degenaar et 
al, 2015. The solid lines in-
dicate fits to an absorbed, 
phenomenological contin-
uum consisting of a Γ = −2
power law (dashed lines), 
a cool kBTbb = 0.1 keV 
blackbody (dotted curve), 
and a hotter kBTbb =
0.4 keV blackbody (dash-
dotted curves). The bot-
tom panel shows the data-
to-model ratio.
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4 Reaction cross-section

LECTURE OUTLINE

• Incident flux, reaction rate, reaction cross-section

• Emissivity, flux, luminosity

• Energy dependent characteristics (e.g. emissivity differential in energy)
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4.1 Incident beam and target

Figure 4.1:  Incident beam and target

Consider a beam of particles (e.g. elec-
trons) with number density, n [particles 

m−3], and velocity v [m s−1] incident on a 

thin ’target’ containing NT particles (e.g. 
protons) and with area AT [m−2] perpen-
dicular to the incident beam (Fig. 4.1).

The total number of target particles

NT = ∫
V
nT(r⃗)dV,

where nT(r⃗) is the target particle density 

(In general, it may depend on position within the target).
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4.2 Incident flux and reaction rate

Incident flux is the number of beam particles crossing per unit area of the 

target per unit time

F = nv, [particles m−2 s−1]

Reaction rate is number of interactions per unit time

R ∝ FNT, [ s−1]
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4.3 Definition of reaction cross-section

We define the constant of proportionality to be the reaction cross-section, 
Q, which has units of area.

R = QFNT

The reaction cross section can be thought of as defining an effective area for 
collisions/interactions between the beam and target particles.

Number of beam particles passing through target per unit time

= FAT

Number of interactions per unit time is FNTQ; Then

Collision probability =
FNTQ
FAT

=
NTQ
AT

,

i.e. we can think of Q a disc of area associated with each target particle.
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4.4 Definitions of emissivity

We are interested in interactions where a photon is emitted. We define the 

emission rate, or emissivity, J as the number of photons emitted per unit time 

from the interaction volume.

J = ∫
V
j(r⃗)dV

where j(r⃗) is the emissivity per unit volume (in general can depend on 

position within the target).

Then it follows that
j = nTFQ [m−3s−1] (4.1)
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4.5 Energy dependent emissivity

Assuming that the incident flux of beam particles is independent of r⃗ then

J = NTFQ (4.2)

Differential emissivity of photons with energy in the range between �
and � + d� can be written as

dj =
dj
d�
d�

dj(�)
d�

= nTF
dQ
d�

[ m−3s−1keV−1] (4.3)

where 
dj(�)
d�

 is the differential emissivity of photons with energy, per unit 

energy range per unit volume, 
dQ
d�

 is the differential cross section.
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We can define differential quantities

j = ∫
�

dj
d�
d�, [ photons m−3s−1]

and

Q = ∫
�

dQ
d�

d�, [ m2]

Similarly
dJ
d�

= ∫
V

dj
d�
dV, [ photons s−1keV−1]

so that

J = ∫
V
∫
�

dj
d�
d�

⏟ ⏟ ⏟
=j

dV = ∫
�
∫
V

dj
d�
dV

⏟⎴⏟⎴⏟
=dJ
d�

d�
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4.6 Source luminosity

The differential source luminosity, per unit photon energy range, is

dL
d�

= �dJ
d�
, [ W keV−1] (4.4)

Total source luminosity is then

L = ∫
�

dL
d�
d� = ∫

�
�dJ
d�
d�, [ W]

Combining with earlier results

L = ∫
�
�d� ∫

V
nTF

dQ
d�

dV, [W] (4.5)

Note that more generally, the flux and cross section are a function of the 

energy of the incoming beam particles.
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4.7 Angular dependence

Cross-section also quantifies the intrinsic rate at which the scattered particles 

(or emitted photons) can be detected at a given angle.

Spherical coordinate system is often used so that the target placed at the 

origin and the z-axis of aligned with the incident beam. Then

Q = ∫
Ω

dQ
dΩ

dΩ

where dΩ = sin(�)d�d', � is the scattering angle, measured between the 

incident beam and the scattered beam, ' is the azimuthal angle.

Often both energy and angular dependency are important, we have energy 

and angle differential cross-section,

d2Q
d�dΩ

Astronomy 345: High Energy Astrophysics I



Lecture: 4 Reaction cross-section 71

so that the total cross-section Q is

Q = ∫
Ω
∫
�

d2Q
d�dΩ

d�dΩ
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4.8 Flux at the Earth

Note the distinction between the particle flux incident on the target and the 

flux received at the Earth

Consider a source at distance D. Then photon number flux at the Earth

Ψ = J
4�D2 , [ m−2s−1]

and energy flux is

Υ = L
4�D2 , [ Wm−2]

the corresponding spectral distributions are defined similarly to before (see 

Equations 4.3,4.4)

dΨ
d�

= 1
4�D2

dJ
d�
, [ m−2s−1keV−1]

dΥ
d�

= 1
4�D2

dL
d�

= �
4�D2

dJ
d�
, [ J m−2s−1keV−1]
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4.9 Note different differential characteristics

Some characteristics are presented in the table below2

Quantity/chacteristic Integrated (e.g. energy integrated) differential

luminosity L dL
d"

emissivity J dJ
d"

emissivity per unit volume j dj
d"

cross-section Q dQ
d"

cross-section Q dQ
d"dΩ

... ... ...

2At home, complete the table with various values used in the course.
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5 Thomson scattering

LECTURE OUTLINE

• Classical treatment of wave scattering

• Thomson scattering, cross-section

• Limitations of classical description
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5.1 EM wave scattering

Thomson scattering is the classical, non-relativistic scattering of radiation by 

a free electron - at rest initially - accelerated by interaction with the radiation 

to velocity v.

Figure 5.1: Cartoon showing scattering of EM 
wave on a free electron from Jeffrey (2014)

Classically, the E⃗-field exerts a force 

on the electron (we can neglect the 

B⃗-field if v ≪ c, where c is the 

speed of light)

We assume E⃗ = E⃗0 cos(!t) at the 

electron, which we treat as a single 

particle target ( i.e. with NT = 1)
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5.2 Incoming EM flux

Incident energy flux (modulus of Poynting vector, S⃗),

S =
|||||S⃗
||||| =

|||||||
1
�0
E⃗ × B⃗

|||||||
= 1
2c�0E

2
0, [W m−2] (5.1)

where �0 is the dielectric permittivity of free space, �0 is the vacuum perme-
ability.

Then incident photon flux,

F = S
ℏ!

, [photons s−1m−2]

where

ℏ ≡ ℎ
2�.
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5.3 Radiated EM emission

Figure 5.2:  Cartoon showing a polarized incident 
plane wave interacting with an electron, causing it 
to oscillate and re-radiate. The original figure was 
taken from here and Jeffrey (2014).

Power radiated by scattered elec-
tron (e.g. by charge moving with 

acceleration v̇)

P = e2v̇2

6��0c3
, [ W ] (5.2)

where e is the electron charge.

We know that from 2-nd Newton 

law
m ̇⃗v = eE⃗,

where m is the electron mass. 
Hence one finds

v̇2 =
e2E20 cos

2!t
m2
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and averaging over a wave period T = 2�∕!

⟨v̇2⟩ =
e2E20
m2 ⟨cos2!t⟩

⏟⎴⏟⎴⏟
=1∕2

=
e2E20
2m2

therefore power radiated by oscillating electron is

P =
e4E20

12��0m2c3
, [ W] (5.3)

Classically, scattered radiation also has angular frequency ! (i.e. elastic 

scattering of electromagnetic radiation and energy is not transferred to the 

scattering electron)

Then photon emissivity is

J = P
ℏ!

, [ photons s−1]
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But we also have
J = NTFQ = 1⏟⏟⏟

=NT

S
ℏ!⏟⏟⏟
=F

Q

since on the other hand we have

J = P
ℏ!

hence
Q = P

S
Substituting expressions for S (Eq 5.1) and P (Eq. 5.3), one finds

Q = P
S =

e4E20
12��0m2c3
⏟⎴⎴⏟⎴⎴⏟

=P

2
c�0E20⏟⏟⏟
=1∕S

simplifying, we find the expression for the cross-section.
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Thomson cross-section:

QT =
8�
3 ( e2

4��0mc2
)
2

= 8�
3 r

2
e (5.4)

where re is the classical electron radius. Numerically

QT = 6.65 × 10−29 m2

in SI units.
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5.4 Classical electron radius

The classical electron radius, re, is the length scale at which the electrostatic 

(Coulomb) energy of an electron is equal to its rest-mass energy.

Let us consider two electrons, A and B (which classically we think of as point 
particles) separated by distance re.

Electrostatic energy of A, due to Coulomb repulsion of B (and vice versa) is 

given by
e2

4��0re
Equating it to mc2, we have

e2
4��0re

= mc2
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hence, one finds

re =
e2

4��0mc2
= 2.82 × 10−15m

Classically, therefore, we can think of as the cross-sectional area of the ’disc’ 
over which the pointlike electron influences other particles in its vicinity.

re is (approximately) the radius of this disc.

BUT:

How does this classical picture of the disc around the electron fit in with its 

quantum description?
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5.5 Limitations of classical description

Take electron momentum, p ≃ mc

Equate this with ∆p from the Heisenberg uncertainty principle, (e.g. ∆p∆x ≥
ℏ∕2)

mc ≃ ∆p ≥ ℏ
∆x

This lets us define a ’Quantum’ length scale:

�Q ≃ ∆x ≥ ℏ
mc =

ℏ
mc

re
re
=
4��0cℏ
e2

re (5.5)

The quantity

� = e2
4��0cℏ

≃ 1
137

is a dimensionless number known as the fine structure constant.

Astronomy 345: High Energy Astrophysics I



Lecture: 5 Thomson scattering 84

So from Equation (5.5), we find for high-energy electrons quantum effects 

become important on a scale

�Q ≲
1
�re ≃ 137re

The Thomson cross-section is, however, an adequate description of low 

energy scattering:
ℏ! ≪ mc2

This is consistent with the assumption of elastic scattering or small energy 

exchange, i.e. the electron kinetic energy and photon frequency are the same 

before and after the scattering.
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6 Bremsstrahlung

LECTURE OUTLINE

• Bremsstrahlung emission mechanism

• Differential bremsstrahlung cross-section

• Bethe-Heitler formula

• Optically thin spectrum and bremsstrahlung luminosity spectrum

• Non-thermal bremsstrahlung
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6.1 Bremsstrahlung emission mechanism

Figure 6.1:  Cartoon showing 
bremsstrahlung emission on an ion 
from Jeffrey (2014)

Bremsstrahlung radiation is produced 

from the interaction of electrons with a pro-
ton (or ion, see Fig 6.1).

For X-ray production, we want an electron 

which is fast but still non-relativistic.

Consider an electron with kinetic energy, 
E = 10 keV.

Compare this with the electron’s rest mass 

energy:

mv2∕2
mc2

= 0.02⟹ v2

c2
= 0.04⟹ v = 0.2c
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6.2 Differential electron flux

Consider a plasma of ionised hydrogen, with a proton density np m−3. Note 

that the electron density ne = np.

For electrons with a single speed (monoenergetic beam) v, and kinetic energy 

E = mv2∕2
Electron flux = nev [ m−2s−1]

Suppose now we have a distribution of electron speeds. Total electron flux

Ftot = ∫
E

dF
dE

dE, [electron m−2s−1]

where differential flux or flux spectrum

dF
dE

≡ F(E), [electron m−2s−1keV−1] flux spectrum
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F(E)dE is the flux of electrons [ m−2s−1] with kinetic energy in the range 

between E and E + dE
F(E) = v(E)

dne
dE

where v(E) =
√
2E∕m and

dne
dE

= number of electrons [ m−3keV−1]
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6.3 Differential emissivity

Differential emissivity for photons of energy � produced by electrons of a single 

energy (speed) E = mv2∕2 is given by

dj
d�

= npF
dQB

d�
(�, E) [photons m−3s−1keV−1] (6.1)

where F = nev and

dQB

d�
(�, E)⟺ differential bremsstrahlung cross-section

i.e. cross-section for photon emission in energy range (�, � + d�) from an 

electron with energy E. The units are [m2 keV−1].

Suppose now we have a distribution of electron speeds, then we need to sum 

the contributions from all electron energies, i.e. to integrate equation (6.1).
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The emissivity differential in energy becomes:

dj
d�

= np

∞

∫
�

F(E)
dQB

d�
(�, E)dE [ photons m−3s−1keV−1] (6.2)

Note that the integral lower limit arises from energy conservation - i.e. 
each emitted photon cannot have more energy than the kinetic energy of 
the electron whose deceleration produced it.

We compute the emissivity for photons of energy � by integrating over all 
electrons with energy E > �.
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6.4 Bremsstrahlung cross-section

Bremsstrahlung cross-section can be written

dQB

d�
(�, E) =

Q0mc2

�E ln (
1 +

√
1 − �∕E

1 −
√
1 − �∕E

) (6.3)

This is known as the Bethe-Heitler formula, where

Q0 =
8
3�r

2
e = 1.54 × 10−31 [m2]

recalling that � = 1∕137, we find that

Q0 =
QT
137�

The Bethe-Heitler formula is valid in the regime where the initial vi and final 
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vf velocities of the electron satisfy:

�c ≪ vi, vf ≪ c

(For lower vi velocities we require quantum mechanical corrections; for higher 
velocities we require relativistic corrections)

Note that the term

ln (
1 +

√
1 − �∕E

1 −
√
1 − �∕E

)

is rather complicated (see Fig 6.2). 

This factor should be included in precise calculations (e.g. RHESSI), but it 
varies fairly slowly with and we will replace it by a constant.
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Figure 6.2:  Log-term ln (1+
√
1−�∕E

1−
√
1−�∕E

) from Eq. 6.3.
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For simplicity we can take,

ln (
1 +

√
1 − �∕E

1 −
√
1 − �∕E

) = 1

so that bremsstrahlung cross-section can be written

dQB

d�
(�, E) =

Q0mc2

�E [m2keV−1] (6.4)

This is known as the Kramers approximation.
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6.5 Optically thin spectrum

Substituting Equation (6.4) into the expression for differential emissivity (Eq. 
6.1), one finds a simplified expression:

dj
d�

= np
Q0mc2

�

∞

∫
�

F(E)
E dE [ photons m−3s−1keV−1]

For an extended, optically thin source of volume V, in which we have 

np = np(r⃗), F(E) = F(E, r⃗), i.e. proton number density and electron energy 

distribution are, in general, functions of position.
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The bremsstrahlung differential emissivity is (using Kramers approxi-
mation)

dJ
d�

=
Q0mc2

� ∫
V
np(r⃗)

∞

∫
�

F(E, r⃗)
E dEdV [ photons s−1keV−1] (6.5)

and

the differential luminosity becomes

dL
d�

= �dJ
d�

= Q0mc2 ∫
V
np(r⃗)

∞

∫
�

F(E, r⃗)
E dEdV [ J s−1keV−1] (6.6)

We will apply these formulae later, and in the example sheets.
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6.6 Bremsstrahlung luminosity spectrum

Suppose there exists some non-zero energy, Emin, such that the kinetic energy 

of all electrons satisfies E > Emin.

It then follows that F(E, r⃗) = 0, for all E < Emin, and the energy integral in 

Equation 6.6
∞

∫
�

F(E, r⃗)
E dE =

∞

∫
Emin

F(E, r⃗)
E dE

Hence, for all photon energies � < Emin, the differential emissivity

dJ
d�

=
Q0mc2

� ∫
V
np(r⃗)

∞

∫
Emin

F(E, r⃗)
E dEdV [ photons s−1keV−1]
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and the luminosity

dL
d�

= Q0mc2 ∫
V
np(r⃗)

∞

∫
Emin

F(E, r⃗)
E dEdV [ J s−1keV−1]

Note that 
dL
d�

 is independent of the photon energy �.

Hence at low photon energies, � < Emin, the differential bremsstrahlung 

spectrum, 
dL
d�

, is flat.
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Figure 6.3:  For a thermal distribution of electrons, we have F(E)⟶ 0 as E ⟶ 0, so 
we can make the approximation F(E, r⃗) = 0, for all E < Emin and and hence the luminosity 
spectrum of thermal bremsstrahlung becomes flat at low photon energies.
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6.7 Non-thermal bremsstrahlung

Consider a non-Maxwellian distribution of electron velocities - e.g. a power 
law differential electron flux spectrum:

F(E) = F0E−�

where F(E)dE is the fraction (or number) of particles with energy between E
and E + dE, and F0 and �.

Note that the power law is usually defined from some low energy cut off, Emin, 
because a power law extending to E ⟶ 0 would formally give F(E)⟶∞
for � > 0.

Consider electrons with kinetic energy E > Emin. Total flux for � > 1

Ftot =

∞

∫
Emin

F(E)dE =

∞

∫
Emin

F0E−�dE =
F0

1 − �
E1−�

|||||||

∞

Emin
=

F0
� − 1

E1−�min
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i.e. we find the constant

F0 = Ftot(� − 1)E�−1min

where Ftot is the flux above Emin.

Differential emissivity with power-law flux spectrum of electrons is, then:

dJ
d�

=
Q0mc2

� ∫
V
np(r⃗)

∞

∫
�

F0E−�

E dEdV

dJ
d�

=
Q0mc2

� ∫
V
np(r⃗)

∞

∫
�

F0E−�−1dEdV

which is valid for E > Emin.
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For a uniform plasma with np(r⃗) = const = np and F0, � are constant,

dJ
d�

=
Q0mc2

� npVF0 (−
E−�
� )

|||||||||

∞

�

The volume-integrated emissivity differential in energy becomes

dJ
d�

=
Q0mc2

�
npVF0�−(�+1) (6.7)

hence
dJ
d�

∝ �−(�+1); dL
d�

= �dJ
d�

∝ �−�

Thus, the non-thermal (collisional) bremsstrahlung photon spectrum is also a 

power law, with the same exponent as the power law differential electron flux 
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spectrum. Observationally, by measuring the slope of the observed photon 

spectrum, we can deduce the slope of the electron flux spectrum.
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7 Thermal and multi-thermal bremsstrahlung

LECTURE OUTLINE

• Thermal Bremsstrahlung

• Non-uniform, non-isothermal plasma

• Multi-thermal bremsstrahlung
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7.1 Isothermal, uniform plasma

Consider an isothermal, homogeneous plasma of fully ionised hydrogen. We 

have ne = np independent of position

F(E) = FM(E) = v(E)
dne
dE

where 
dne
dE

 is the Maxwellian distribution. Hence the flux spectrum

FM(E) =
√

2E
m
2np
√
�

E1∕2

(kBT)3∕2
exp (− E

kBT
)

Note: before we defined F(E) = F(E, r⃗), this is equivalent to writing F(E) =
F(E, T) provided we can define T = T(r⃗).
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The differential emissivity is, then

dJ
d�

=
Q0mc2

� ∫
V
np(r⃗)

∞

∫
�

F(E, T)
E dEdV =

=
2n2pVQ0mc2

�

∞

∫
�

√
2
�m

E
E

1
(kBT)3∕2

exp (− E
kBT

) dE .

Putting z = E∕kBT and integrating over E,
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the emissivity spectrum becomes

dJ
d�

= 2
√

2
�m

n2pVQ0mc2

(kBT)1∕2�
exp (− �

kBT
) (7.1)

and luminosity spectrum

dL
d�

= 2
√

2
�m

n2pVQ0mc2

(kBT)1∕2
exp (− �

kBT
) (7.2)

Thus, the energy spectrum for thermal bremsstrahlung from a homoge-
neous plasma decays exponentially at high photon energies.
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7.2 Spectral shape

Recall Figure 3.5 from the previous lec-
tures.

Spectrum which falls exponen-
tially at high energies - thermal, 
see e.g. Figure 3.5.
Observationally, measuring 

the shape of 
dL
d�

 allows us to 

determine a temperature, T, 
for the plasma. We can do 

this, e.g., for the X-ray emission 

from galaxy clusters and the 

Sun. (The isothermal assump-
tion may break down, how-
ever).
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7.3 Thermal bremsstrahlung from Coma cluster

Figure 7.1: XMM-Newton mosaic image of the central region of Coma (5 overlapping point-
ings) in the [0.3-2] keV energy band and isothermal with with kBT = 8.25 keV from Arnaud et 
al, 2001
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7.4 Thermal (and non-thermal) bremsstrahlung from solar flares

Figure 7.2: Left: RHESSI image of a solar flare: red - thermal, blue - non-thermal, yellow 
background is ∼ 1 MK plasma from SDO/AIA; Right: X-ray spectrum of a limb flare. From 
Kontar et al, 2010
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7.5 Multi-Thermal Bremsstrahlung

Recall Equation 7.2 for thermal bremsstrahlung:

dL
d�

= 2
√

2
�m

n2pVQ0mc2

(kBT)1∕2
exp (− �

kBT
)

Measuring dL∕d� also permits us to determine n2pV. This quantity is known 

as the emission measure.

Note that the mass of gas in the plasma is given by (ignoring the mass of 
electrons): Mgas = npVmp.

So the emission measure does not directly tell us Mgas; to determine this 

we need to estimate V separately.

For example, for the X-ray emission from a galaxy cluster, we can assume 

the cluster is spherical and use its angular size and redshift to estimate its 

volume.
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7.6 Inhomogeneous plasma

Suppose the plasma is not isothermal. Consider the differential emissivity 

per unit volume at position, r⃗ (from Equation 7.1)

dj
d�

= 2
√

2
�m

n2p(r⃗)Q0mc2

(kBT(r⃗))1∕2�
exp (− �

kBT(r⃗)
) [ photons m−3s−1keV−1]

Integrated emissivity for the whole volume is then

dJ
d�

= ∫
V

dj
d�
dV

i.e.
dJ
d�

= 2
√

2
�m

Q0mc2

k1∕2�
∫
V

n2p(r⃗)
T(r⃗)1∕2

exp (− �
kBT(r⃗)

) dV
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7.7 Source emission measure function

One useful approach to simplifying this expression is to replace the integral 
over volume with an integral over temperature. We do this by introducing 

the source emission measure function or sometimes called differential 
emission measure. This is a measure of how much of the plasma is at 
temperature T.

We define

∫
T
�(T)dT = ∫

V
n2p(r⃗)dV (7.3)

where r⃗ = r⃗(T).

From which it can be shown that3,

3Try at home as an exercise
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the differential emissivity from inhomogeneous, non-isothermal plasma 

becomes

dJ
d�

= 2
√

2
�m

Q0mc2

k1∕2�

∞

∫
0

�(T) 1
T1∕2

exp (− �
kBT

) dT (7.4)

where �(T) characterises the plasma.
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7.8 Spherical volume

We can see more easily how this substitution works for the specific example 

of a spherically symmetric temperature distribution, i.e.

T = T(r)

We make the change of variables from (r, �, ') to (T, �, ') and we write

dV = r2 sin(�)d�d'dr = dSdr

where dS is area element.

Let us make a substitution:

dr =
|||||||
dr
dT

|||||||
dT = dT

|||||
dT
dr

|||||
changing integration variable from r to T.
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Then, it follows that

∫
V

e
(− �

kBT(⃗r)
)n2p(r⃗)dSdr

√
T(r⃗)

= ∫
T

∫
S

e
(− �

kBT(⃗r)
) n2p(r⃗)
√
T(r⃗)

|||||
dT
dr

|||||
dS dT =

=∫
T

�(T)
√
T(r⃗)

exp (− �
kBT(r⃗)

) dT ,

where

�(T) = ∫
ST

n2p(r⃗)
|||||
dT
dr

|||||
dS

is the differential emission measure and ST denotes spherical surface of 
constant temperature T, at radius r.

Things simplify further if the plasma density is also spherically symmetric i.e. 
np(r⃗) = np(r). Note the problems in the example sheet.
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7.9 Isothermal surfaces

Figure 7.3:  Isothermal surfaces

More generally T = T(r, �, ') but we can 

still change variables in the integral by iden-
tifying isothermal surfaces - i.e. surfaces 

of constant temperature (which will not in 

general be spherical).

The source emission measure is now de-
fined in terms of the temperature gradient, 
∇T

�(T) = ∫
ST

n2p(r⃗)
|∇T|

dS

but we will not consider any non-spherical 
cases here.
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7.10 Examples of inhomogeneous plasma

The differential emissivity from non-uniformly heated plasma can be presented 

using �(T), see Equation 7.4:

1
�
dL
d�

= dJ
d�

= 2
√

2
�m

Q0mc2

k1∕2�

∞

∫
0

�(T) 1
T1∕2

exp (− �
kBT

) dT

A wide range of behaviour for �(T) is possible:

• �(T) smoothly varying in an extended gas cloud (e.g. solar corona, 
galaxy cluster Figure 7.4)

• �(T) has a sharp change or discontinuous across a shock front (e.g. 
transition region in the solar atmosphere, supernova remnant, Fig-
ure 7.5)
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Figure 7.4: Temperature structure of the galaxy cluster Abell 3921. From Belsole et al, 2005
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Figure 7.5: Cassiopeia A Super-
nova Remnant: In this false-color im-
age, NuSTAR data, which show high-
energy X-rays from radioactive mate-
rial, are colored blue. Lower-energy 
X-rays from non-radioactive material, 
imaged previously with NASA’s Chan-
dra X-ray Observatory, are shown in 
red, yellow and green from NuSTAR 
webpage
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8 Photon spectrum interpretation

LECTURE OUTLINE

• Ambiguity between thermal and non-thermal processes

• Electron energy spectrum from photon spectrum
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8.1 Mimicking Non-thermal Processes

We saw earlier that, if the non-thermal differential electron flux distribution is a 

power law, then the differential photon luminosity is also a power law, with 

the same exponent.

If, instead, we have a thermal plasma, but not an isothermal plasma, then we 

can also obtain a power law photon spectrum - provided the source emission 

measure function has a power law dependence on temperature, i.e. 4

if �(T) ∝ T−� then
dL
d�

∝ �−�

with � ≠ �, but there is ambiguity between thermal and non-thermal 
processes.

4See problem sheet
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8.2 Interpreting Energy Spectra

The fact that measurements of dJ∕d� and dL∕d� are not perfect, but are 

subject to experimental errors, raises some important numerical issues.

The problem is to determine, from dJ∕d�:

• �(T) for a thermal source

• F(E) for a non-thermal source

Consider a non-thermal source, homogeneous plasma:

dJ
d�

=
Q0mc2

� npV

∞

∫
�

F(E)
E dE
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The integral
∞

∫
�

F(E)
E dE

is a function of photon energy, �. We define

G(�) =

∞

∫
�

F(E)
E dE

It follows that
dJ
d�

=
Q0mc2

� npVG(�)

Then

G(�) = 1
Q0mc2npV

�dJ
d�
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Let us differentiate G(�)5

dG
d�

= d
d�

∞

∫
�

F(E)
E dE = −

F(E)
E

|||||||E=�

then we can find

F(E) = − (�dG
d�

)
|||||||�=E

= −E dG
d�

|||||||�=E
and substituting expression for G(�), we have

5If f(y) is a function that is continuous on our interval, then

d
dx

∫
b(x)

a(x)
f(y)dy = f(b(x))db

dx
− f(a(x))da

dx

where a(x) and b(x) are functions of x.
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F(E) = −E
Q0mc2npV

d
d�
�dJ
d�
|||||||�=E

=

= −E
Q0mc2npV

[dJ
d�

+ � d
d�

(dJ
d�
)]
|||||||�=E

(8.1)

Since the solution (8.1) for F(E) involves the derivative of the photon energy 

spectrum, 
dJ
d�

 , this means that small changes in the measured data for 
dJ
d�

 can 

lead to large changes in the inferred F(E). 6

To solve the problem with large errors, we need to apply regularization. 
Extraction of electron spectrum from photon spectrum is a challenge, see e.g. 
Brown et al, 2006.

6This an example of an ill-posed inverse problem.
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Figure 8.1: Left: Two weakly different X-ray spectra dJ∕d". Right: Two corresponding 
electron spectra F(E) showing large differences after differentiation in Equation 8.1.
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8.3 Example: Hard X-ray spectrum of a solar flare

Figure 8.2: Albedo-corrected RHESSI spectrum (crosses with error bars) at the hard X-ray 
peak of the solar flare on 2002-06-02 from Holman et al, 2011. The solid line shows the 
combined isothermal (dotted line) plus double power-law (dashed line) spectral fit. The 
spectral fit before albedo correction is over-laid (gray, solid line).
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8.4 Example: Derivative of a noisy data

Figure 8.3: A power-law spectrum J(E) ∝ 1∕E (left panel) and the absolute value of the 
derivative |dJ∕dE| ∝ 1∕E2 (right panel); without and with 3% Gaussian noise added. See 
python 3.6 code online.
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8.5 Derivative as an inverse problem

Let us assume that we have a smooth function J(E) over the interval E01 ≤
E ≤ E02. We have a finite sample Ji of measured values of this function, 
obtained over some grid E01 = E0 < E1 < ... < Ei < ... < En = E02 with 

mesh size ∆E. The noisy data set has an error

|Ji − J(Ei)| ≤ �J (8.2)

where �J is an uncertainty of measurement.

We want to find the best smooth estimate of the derivative J′(E) using the 

given data set ∀ E ∈ [E01, E02]. The two point finite difference estimate is 

readily available with the following bound
|||||||
Ji+1 − Ji
∆E − J′(Ei)

|||||||
≤ O(∆E + �J

∆E), (8.3)

where the first and second terms in the right hand side represent consistency 

and propagation errors respectively.
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8.6 Thermal X-ray Emission Lines

Hot astrophysical plasmas in e.g. the Sun contain traces of heavier elements 

which are partially (often highly!) ionised. 
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Figure 8.4: Simulated X-ray spectra of solar flare plasma thermal emission for a range of 
plasma temperatures from 10 to 50 MK, from Skinner et al, 2013
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Figure 8.5: The Sun at 171 Å chiefly 
emitted by Fe IX and X at million 
degrees K. Elements produce emis-
sion lines, superimposed on a ther-
mal background (Fig 3.7). Such emis-
sion lines can be observed using nar-
row filters, sensitive to only a nar-
row range of X-ray energies (temper-
atures).
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Figure 8.6: Multi-temperature solar corona from SDO/AIA observations of multi-temperature 
corona.
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9 Inverse Compton Scattering

LECTURE OUTLINE

• Compton (inverse Compton) scattering

• Kinematics of the scattering (head-on collision)

• Energy gain due to the scattering

• Validity of approximations used
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9.1 Thompson scattering and Compton scattering

The scattering of photons in media due to their interaction with electrons.

Thompson scattering (which we already discussed in Lecture 5) is the special 
case of Compton scattering in the limit of a low energy incoming photon - i.e. 
in the rest frame of the electron, the photon has incoming frequency �, such 

that
ℎ� ≪ mc2

In this low energy limit, the frequency �′, of the outgoing photon satisfies

� = �′

and the reaction cross-section is equal to the Thompson cross-section (see 

Section 5). This is purely classical result.
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9.2 Compton Scattering

More generally (Compton, 1923, Klein & Nishina, 1929), we need to take into 

account :

1) Modification of cross-section

Thompson cross-section replaced by Klein-Nishina formula

QKN = QT [1 − 2 ℎ�
mc2

+ 25
6 ( ℎ�

mc2
)
2

− ...]

2) Electron recoils, and absorbs some of the photon’s energy , so that

� > �′

e.g. energy loss by a photon.
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9.3 Inverse Compton Scattering

A low energy photon collides with a relativistic electron and gains energy at 
the expense of the electron (e.g. radio photons might be boosted to X-ray 

energies). So for Inverse Compton scattering we want

E′ ≪ E, �′ ≫ �

In most astrophysical situations it is still OK to assume that, in the rest frame 

of the electron, the energy of the photon before collision is much less than the 

rest mass energy of the electron i.e.:

ℎ� ≪ mc2

This means that we do not need to use the Klein-Nishina formula, but we can 

assume
QIC ≈ QT =

8
3�r

2
e
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9.4 Kinematics (head-on collision)

To study the kinematics of inverse Compton scattering, we consider first the 

case of a head-on collision.

Figure 9.1: Photon of energy �, scattered through 180o by a relativistic electron of initial 
energy E1.

Recall from special relativity, energy and momentum together make up the 
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4-vector, 4-momentum and Lorentz factor is 
 = 1
√
1−v2∕c2

For the photon:

energy: � = ℎ�

momentum: p = �
c =

ℎ�
c

For electron:

energy: E = 
mc2

momentum: p = 
mv

Let us recall the useful relation, for the electron

E2 = p2c2 +m2c4
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hence

p2 = E2

c2
−m2c2 = 
2m2c2 −m2c2 = (
2 − 1)m2c2

⟹ p = mc
√

2 − 1

By the conservation of energy, we have

E1 + �1 = E2 + �2

E1 − E2 = ∆E = �2 − �1 (9.1)

and conservation of momentum:

p1 −
�1
c = p2 +

�2
c (9.2)

We want to express �2 (final photon energy) in terms of �1 and E1, i.e. we 

want to eliminate E2.
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We introduce the dimensionless energy variable for the photon

� = �
mc2

analogous to


 = E
mc2

Equations (9.1, 9.2) give


1 − 
2 =�2 − �1 = ∆� (9.3)
√

21 − 1 − �1 =

√

22 − 1 + �2 (9.4)

Thus

2 = 
1 − ∆�

√

21 − 1 −

√

22 − 1 = �1 + �2 = 2�1 + ∆�
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Substituting for 
2:
√

21 − 1 −

√
(
1 − ∆�)2 − 1 = 2�1 + ∆�

⟹ (
1 − ∆�)2 − 1 = [
√

21 − 1 − (2�1 + ∆�)]

2

simplifying, one obtains

⟹ ∆�[
1 + 2�1 −
√

21 − 1] = 2�1 [

√

21 − 1 − �1]

∆� =
2�1 [

√

21 − 1 − �1]

[
1 + 2�1 −
√

21 − 1]

(9.5)

We can further simplify this formula by noting that, for astrophysical examples 
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of inverse Compton scattering, we have:

Low energy incoming photons: �1 ≪ 1
High energy incoming electrons: 
1 ≫ 1

so we have from Equation (9.5)

∆� =
2�1 [

√

21 − 1 − �1]

[
1 + 2�1 −
√

21 − 1]

=
2�1
1 [

√
1 − 1∕
21 − �1∕
1]


1 [1 + 2�1∕
1 −
√
1 − 1∕
21]

Let us retain first order terms in 1∕
1, and using that (1 + x)n ≃ 1 + nx, we 

can derive

∆� =
2�1

[
1 − 1∕2
21 − �1∕
1

]
[
1 + 2�1∕
1 − 1 + 1∕2
21

] ≃
2�1
21

[2�1
1 + 1∕2]
=

4�1
21
[4�1
1 + 1]

(9.6)

Equation 9.6 can be further simplified. However, since we assumed 
1 ≫ 1, 
and �1 ≪ 1, the value 
1�1 is undefined, i.e. 
1�1 ≫ 1 or 
1�1 ≪ 1
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Let us first consider the case 
1�1 ≫ 1 in 9.6:

∆� ≃
4�1
21

[4�1
1 + 1]
≃ 
1 (9.7)

Equation 9.7 is approximation saying that photon gains all the energy of the 

incoming electron.

However, even larger relative boost can be achieved if �1
1 ≪ 1.

Let us now consider the case �1
1 ≪ 1 in Equation (9.6), so we can 

write:
∆� ≃ �2 ≃ 4�1
21 (9.8)

since ∆� = �2 − �1 ≃ �2.

Note that a head-on collision gives the maximum energy transfer to the 

outgoing photon.
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Averaging over all scattering directions gives approximately:

⟨�2⟩ ≃
4
3


2
1�1 (9.9)

when averaged over all angles.
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9.5 Example I

Let us consider head-on collision between an optical photon �1 = 1 eV and 

a cosmic ray electron.

Note that �1 = �1∕mc2 = 10−3∕511 ≃ 2 × 10−6.

Astronomy 345: High Energy Astrophysics I



Lecture: 9 Inverse Compton Scattering 148

9.6 Example II

For a CMBR photon �1 = 10−3 eV and a cosmic ray electron. Note that 
�1 = �1∕mc2 = 10−6∕511 ≃ 2 × 10−9.
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9.7 Validity of approximations

Two examples show that in two cases:

• Head-on collision between a CMBR photon and a cosmic ray electron

• Head-on collision between an optical photon and a cosmic ray electron

In all cases we considered, �1
1 ≪ 1, as we assumed in deriving the 

expression for �2.
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10 Inverse Compton Luminosity and Spectrum

LECTURE OUTLINE

• Inverse Compton luminosity

• Compton scattering cross-section

• Inverse Compton luminosity spectrum
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10.1 Inverse Compton Luminosity

Consider a homogeneous volume, V, filled with electrons all of energy E =

mc2 and number density ne, and photons all of energy � = ℎ� and number 
density n�

Total emissivity from this volume is given by (see Equation 4.2):

J = NTFQ

We regard the photons as the target particles, hit by a beam of highly relativistic 

electrons. Thus:

NT = n�V and F = nev ≃ nec

so that
J = n�VnecQIC (10.1)
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From previous section, average energy of a scattered photon,

⟨�2⟩ ≃
4
3


2ℎ�

Thus, average source luminosity from Equation (10.1)

L = J⟨�2⟩ = n�VnecQIC
4
3


2ℎ�
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We can re-write this as follows:

LIC =
4
3c


2 Ne⏟⏟⏟
=neV

QIC U�⏟⏟⏟
=n�ℎ�

, [W] (10.2)

where U� is the radiation energy density.
Hence, the average IC power emitted from Ne electrons of energy 


mc2

(dE
dt
)
IC
= LIC =

4
3QICcNe
2U� [W] (10.3)

which is also the energy loss rate of the electrons.
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10.2 Lifetime of an electron and IC losses

Power emitted by a single electron

LIC =
4
3QICc
2U�

Timescale for an electron to lose its energy

�IC ≈
E
dE
dt

=

mc2

32
9
�r2ec
2U�

= 9mc
32�r2e

1

U�

Let us consider e.g., CMBR photons T ≃ 2.7 K. From black body radiation 

energy density (see Equation 3.6 and description in Section 3.10)

U� = aT4 ≃ 4 × 10−14, [J m−3]

Timescale for an electron to lose its energy in CMBR background

�IC ≈
9mc
32�r2e

1

U�

≃ 2 × 1012

 [ years]
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For, e.g., 1 GeV electron


 = E
mc2

≃ 2 × 103

we have �IC ≃ 109 years.
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10.3 IC spectrum

In a real situation the electrons and photons would have a distribution of initial 
energies, on which the Inverse Compton cross-section, QIC  would depend - 
i.e. for an IC photon of outgoing energy � = ℎ� we have

dQIC

d�
=
dQIC

d�
(ℎ�0, E)

where ℎ�0 is the energy of incoming photon, E is the energy of incoming 

electron. Further

dJIC
d�

= c ∫ ∫ ∫
dne
dE

dn�
d�0

dQIC

d�
d�0dEdV

We can define the electron energy before collision via 
 = E∕mc2, so that we 

can also write

dJIC
d�

= c ∫ ∫ ∫
dne
d


dn�
d�0

dQIC

d�
d�0d
dV
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and
dLIC
d�

= c� ∫ ∫ ∫
dne
d


dn�
d�0

dQIC

d�
d�0d
dV

We can simplify this integral by make the assumption that all emitted 

photons gain the average amount of energy i.e.

dQIC

d�
= 0 unless � = 4

3

2ℎ�0

we can write this as

dQIC

d�
= 8
3�r

2
e� (

4
3


2ℎ�0 − �) = QT� (
4
3


2ℎ�0 − �) (10.4)

where �(x) is Dirac delta function. Noting that Dirac delta function has the 

following properties:

�(x − x0) = 0 if x ≠ x0
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∫
∞

−∞
�(x − x0)dx = 1 and ∫

∞

−∞
f(x)�(x − x0)dx = f(x0)

Changing variables from 
 to x = 4∕3
2ℎ�0 at fixed �0, we have:

dLIC
d�

= c� ∫ ∫ ∫
dne
d


dn�
d�0

QT�(x − �)d�0
3

8
ℎ�0
dxdV

Integrating over the electron energy x

dLIC
d�

= c�QT ∫ ∫ (
dne
d


3
8
ℎ�0

)
|||||||x=�

dn�
d�0

d�0dV

Substituting back � = x = 4
3

2ℎ�0 and simplifying, we find luminosity 

spectrum of Inverse Compton emission for arbitrary electron and photon 

spectra
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The luminosity differential in energy

dLIC
d�

= cQT ∫ ∫ (


2
dne
d


)
|||||||
=

√
3�
4ℎ�0

dn�
d�0

d�0dV, [ W keV−1] (10.5)

depends on electron spectrum.

Now we need to assume the spectrum of incoming electrons.
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10.4 Power-law spectrum of electrons

Suppose we have a power-law electron spectrum independent of position i.e.

dne
d


= K
−� (10.6)

Then

(


2
dne
d


)
|||||||
=

√
3�
4ℎ�0

= K
2 


−�+1 = K
2 (

3�
4ℎ�0

)
1−�
2

so luminosity differential in energy

dLIC
d�

= c83�r
2
e
K
2 (

3
4ℎ
)
1−�
2
�
1−�
2 ∫ ∫ �

�−1
2

0
dn�
d�0

d�0dV, [ W keV−1] (10.7)

i.e. if we neglect the constants.
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The proportionality becomes

dLIC
d�

∝ �−�, where � = � − 1
2 (10.8)

So, again, we find that a power-law distribution of electron energies 

gives rise to a power law photon spectrum, but with a different power 
law index.
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10.5 Summary of power-law spectra

 X-ray mechanism  Electron distribution  Photon index

 Non-thermal Bremsstrahlung F(E) ∝ E−� dL
d�
∝ �−�

 Thermal inhomogeneous plasma � ∝ T−� dL
d�
∝ �−�

 Inverse Compton scattering
dne
d


∝ 
−� dL
d�
∝ �−

(�−1)
2

Note spectrum for synchrotron radiation in the next section.
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11 Synchrotron radiation: luminosity and spectrum

LECTURE OUTLINE

• Synchrotron radiation luminosity

• Synchrotron radiation cross-section

• Synchrotron radiation luminosity spectrum
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11.1 Cyclotron radiation

Figure 11.1:  Electron gy-
rating in B⃗ field

Consider a non-relativistic electron, with v ≪ c, fol-
lowing a circular orbit or radius, r, ’around’ a field line 

of a uniform magnetic field, B⃗.

Lorentz force gives circular motion (Figure 11.1)

evB = mv2
r ⟹ !L =

v
r =

eB
m

where !L is Larmor angular frequency. Electron 

emits cyclotron radiation at the Larmor frequency
�L

�L =
!L
2� = eB

2�m (11.1)

Any constant velocity component parallel to the magnetic field does not lead 

to radiation (no change in acceleration, recall Equation 5.2).

Astronomy 345: High Energy Astrophysics I



Lecture: 11 Synchrotron radiation: luminosity and spectrum 165

11.2 Cyclotron line features

Figure 11.2:  Hercules 
X-1 X-ray spectrum from 
Trumper et al, 1978

Cyclotron line has energy:

� = ℎ�L =
ℎeB
2�m ≃ 10−7B, [ keV Tesla−1]

Cyclotron lines are observed in X-ray binaries due to 

resonant scattering of the line of sight X-ray photons 

against electrons embedded in magnetic fields.

For e.g. Her X-1 (X-ray binary) has such feature near 
37 keV, (discovered by Trumper et al, 1978 see also 

Furst et al, 2013) so can diagnose magnetic field:

B ≃ 3.7 × 108, [ Tesla]

Note that the strong magnetic fields are expected near to a neutron star.
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11.3 Synchrotron Radiation

Consider now a highly relativistic electron v ⟶ c, and 
 ≫ 1.

Radiation is known as synchrotron and is strongly Doppler shifted and 

forward beamed due to relativistic aberration (Figure 11.3).

Figure 11.3: Cartoon showing relativistic beaming of synchrotron radiation
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11.4 Synchrotron frequency and single electron spectrum

Figure 11.4:  Synchrotron spectrum of a single elec-
tron

Typical frequency of synchrotron 

radiation is

�s =
3
2


2�L =
3
2


2 ( eB
2�m)

(11.2)
Synchrotron radiation is emit-
ted over a wide range of fre-
quencies (Figure 11.4).

Peak occurs at ∼ 0.3�s, but av-
erage frequency value ⟨�⟩ ≃

�s. At low frequencies, � ≪ �s, the spectrum grows ∝ �1∕3 (Figure 11.4).

Astronomy 345: High Energy Astrophysics I



Lecture: 11 Synchrotron radiation: luminosity and spectrum 168

11.5 Synchrotron luminosity

We can estimate the power radiated by a single electron using Equation 5.2:

P = e2v̇2

6��0c3

where the acceleration v̇ can be determined by transforming to the electron’s 

rest frame, in which electric field is:

⃖⃗E′ = 
v⃗ × B⃗

From Newton’s 2nd law

d⃖⃗v′
dt′

= e
m
⃖⃗E′ =

e

m v⃗ × B⃗

We can estimate the power radiated by a single electron is

(dE
′

dt′
)
S
= e2v̇′

2

6��0c3
= e2

6��0c3
(
ev
B sin(�)

m )
2

(11.3)
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where dE′∕dt′ is the power in electron rest’s frame. But the power is an 

Lorentz invariant, e.g.
dE′
dt′

= dE
dt

Hence the observed power radiated per electron is also given by the formula 

11.3.

If v⃗ is randomly oriented in 3-D, then ⟨sin2(�)⟩ = 2
3
.

Also, the magnetic energy density is defined to be

UB =
B2
2�0

where �0 is permeability constant. Recalling Thomson cross-section (Equation 

5.4)

QT =
8�
3 ( e2

4��0mc2
)
2

= 8�
3 r

2
e
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The power emitted by an electron (Equation 11.3) can be re-written:

(dE
dt
)
S
= e2

6��0c3
2
3 (

ev
B
m )

2

= 4
3QTc
2UB (11.4)

where we took v = c and �0�0 = 1∕c2.

If we compare this formula (Equation 11.4) with our result for the Inverse 

Compton luminosity (Equation 10.3), one finds:
(dE
dt

)

IC(dE
dt

)

S

=
U�
UB

(11.5)

The ratio of Inverse Compton and Synchrotron luminosity from a source 

is given by the ratio of its radiation to magnetic energy density.
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11.6 Synchrotron radiation from electron distribution

For a homogeneous volume, V , of uniform magnetic field, B⃗, containing Ne
electrons - all of energy E = 
mc2 then (as for the Inverse Compton case) 
the total luminosity for Ne electrons is given by

LS =
4
3QTcNe
2UB [ W] (11.6)

As we considered in the Inverse Compton case, in a real situation the electrons 

would have a distribution of energies, and their number density would be 

a function of position. We need to take this into account when we calculate 

the synchrotron spectrum - i.e. the luminosity as a function of photon energy. 
Thus, synchrotron luminosity spectrum is

dLS
d�

= ∫ ∫ 4
3c


2dne
d


UB
dQS

d�
d
dV (11.7)
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11.7 Synchrotron luminosity spectrum

To simplify matters, we make a similar approximation as in the Inverse Comp-
ton case (see Lecture 9): we assume that synchrotron emission only occurs 

at the mean synchroton frequency

�s =
3
2


2�L
and all synchrotron photons have energy:

� = ℎ�s =
3
2


2ℎ�L
This means that we assume the synchrotron differential cross-section 

takes the form:
dQS

d�
= 8
3�r

2
e� (

3
2


2ℎ�L − �) (11.8)

Hence, we can write the differential synchrotron spectrum as

dLS
d�

= 4
3c ∫ ∫ 
2

dne
d


UB
8
3�r

2
e� (

3
2


2ℎ�L − �) d
dV
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and integrating over 
, one finds 7

the differential luminocity

dLS
d�

= 4
3cQT ∫ (



3ℎ�L

dne
d


)
|||||||
=

√
2�

3ℎ�L

UBdV (11.9)

Note the similarity to IC expression.

7Here one can use another property of Dirac delta function

�(f(x)) = 1
f’(a)

�(x − a),

where a is the root of f(x) i.e. f(a) = 0.
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11.8 Radiation from a power-law electron spectrum

Suppose we have a power-law electron spectrum independent of position i.e.

dne
d


= K
−�, � > 0

Then assuming uniform distribution of electrons and uniform B⃗:

dLS
d�

= 4
3cQT (



3ℎ�L

K
−�)
|||||||
=

√
2�

3ℎ�L

∫ UBdV (11.10)

or
dLS
d�

∝ �−
�−1
2

which is the same result as for Inverse Compton Scattering.
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11.9 Typical energies of synchrotron electrons and photons

We saw previously that, for extremely high magnetic fields (e.g. near to a 

pulsar), we can obtain X-ray cyclotron emission/absorption:

� = ℎ�L =
ℎeB
2�m ≃ 10−7B [keV/Tesla]

since �s = 3∕2
2�L we could in principle achieve X-ray synchrotron energies 

for more modest magnetic fields, provided 
 is large enough.

For e.g. the Solar corona, fields of about 10-100 Gauss 8 have been measured. 
Thus to observe X-ray synchrotron emission, with e.g. 10 keV, from the corona 

would in this case require

3
2


210−710−2 = 10

8Note that 1 Gauss =10−4 Tesla
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hence

2 ≃ 1010 ⟹v = 0.99999999995c

so v should be very close to c!

Suppose instead we take a more modest v = 0.5c


2 = (1 − 0.25)−1 = 4
3

� = 1.5
2ℎ�L ≃ 2 × 10−7B [keV/Tesla]

Thus for B = 10−2 Tesla=100 Gauss, � = 2 × 10−6 eV or

�L =
2 × 10−6 × 1.6 × 10−19

6.63 × 10−34
≃ 480 [ MHz]

This is in the radio part of the E-M spectrum. Indeed, gyro-synchrotron 

emission peaking near ∼ 10 GHz is often observed during solar flares (e.g. 
Figure 11.5), indicating mildly relativistic particles 0.1-1 MeV.
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11.10 Solar energetic particles and gyro-synchrotron emission

Figure 11.5: Simulations (centre) of the spectrum (right) and the images (left) of radio 
emission provides strong evidence that the emission mechanism is (gyro-) synchrotron 
radiation - due to the acceleration of charged particles in the Sun’ s magnetic field. From Nita 
et al, 2015
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