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Abstract. Hard X-ray spectra in solar flares provide knowledge of the electron
spectrum that results from acceleration and propagation in the solar atmosphere.
However, the inference of the electron spectra from solar X-ray spectra is an ill-posed
inverse problem. Here we develop and apply an enhanced regularization algorithm
for this process making use of physical constraints on the form of the electron
spectrum. The algorithm incorporates various features not heretofore employed in
the solar flare context : Generalized Singular Value Decomposition (GSVD) to deal
with different orders of constraints; rectangular form of the cross-section matrix to
extend the solution energy range; regularization with various forms of the smoothing
operator; and “preconditioning” of the problem. We show by simulations that this
technique yields electron spectra with considerably more information and higher
quality than previous algorithms.
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1. Introduction

In order to address fundamental questions on electron propagation and
acceleration in solar flares, it is necessary to infer as much as quan-
titative information as possible on the electron spectrum in the solar
plasma. A longstanding method of doing this involves the analysis of
the emitted hard X-ray (HXR) bremsstrahlung spectrum, in particular
the inversion of the integral equation (Brown, 1971) relating the two
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2 Kontar et al.

spectra. This task is particularly challenging since even the most accu-
rate photon spectra are contaminated by noise, which is dramatically
amplified in any unconstrained attempt to extract the electron flux
spectrum. Traditional approaches to the determination of the electron
spectrum sidestep this problem by assuming simple (e.g. isothermal +
power-law) forms and adjusting their parameters to achieve the best fit
to the HXR data (e.g., Holman et al. 2003). However, such algorithms,
by their very nature, cannot detect features in the electron spectrum
that, although real, were not included into the prescribed empirical
form. Indeed, the analysis of high resolution RHESSI (Ramaty High
Energy Solar Spectroscopic Imager) (Lin et al., 2002) spectra shows
substantial deviations from simple models (Kontar et. al., 2003). While
this was adequate for earlier low resolution data, the goal in high
resolution photon spectrum analysis should be the suppression of noise-
induced unphysical behaviour in the electron flux, while maintaining
maximum ability to recover faithfully real features. Various algorithms
have been employed with this intent (see, e.g., Johns and Lin 1992;
Thompson et al. 1992; Piana 1994; Piana & Brown 1998: Piana et
al. 2003) all belonging to the wide class of regularization methods
for linear ill-posed inverse problems, though differing in method of
regularization. For example, Johns and Lin (1992) sum over energy
intervals to obtain sufficiently good statistical accuracy (regularization
by coarse energy binning). Their results suggested downturn of the
electron spectra below 50 keV, though the results were too uncertain
to be conclusive. Piana et al. (2003) have detected, through Tiknonov
regularized inversion (Tikhonov 1963), a feature at E ~ 55 keV in
the mean source electron spectrum for the July 23, 2002 solar flare,
that has been impossible to detect through a forward-fitting algorithm
involving power-law functions such as those used by Holman et al.
(2003). Although it has not been possible so far to establish the origin
of this particular feature !, nevertheless the F(E) form obtained by
Piana et al. (2003) is a faithful description of the F(E) corresponding
to the photon spectrum used.

An observed hard X-ray spectrum I (e) is related, through a bremsstrahlung
cross-section Q(e, E), to the mean electron flux spectrum F(E) in the
source, through the relation (Brown 1971; Johns and Lin 1992; Brown,
Emslie & Kontar 2003)

1

I(e) = AT R2

% /EOOF(E) Q(e, E) dE, (1)

L Tt is possible that this particular feature has non-solar origin and is a result of
the effects of pulse pileup — Smith et al. 2002
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where R is the distance to the observer, V is the emitting volume and
7 = V=1 [n(r)dV is the mean target density. The problem of determin-
ing F(E) from I(e) when they are related by a Volterra-type equation
such as (1) is an ill-posed problem in the sense of Hadamard (1923). As
a result, every experimental problem described by an equation like (1)
is affected by a numerical pathology termed ill-conditioning whereby,
when an unconstrained solution procedure is followed, the presence
of measurement noise is reflected in unphysical oscillations in the re-
constructed solution for the source function. To obtain a meaningful
solution F(E) one needs to avoid noise amplification (e.g. Craig &
Brown 1986) by means of regularization methods applying physical
constraints to the electron spectrum. The algorithm looks for an ap-
proximate least-squares solution of the integral equation relating the
photon and the electron spectra, but subject to inclusion of additional
information based on physically meaningful constraints or assumptions
on the solution. This leads to the formulation of a family of regular-
ization methods exploiting different possible a priori information on
the electron flux coming from solar physics. The aim of the present
paper is to introduce this generalized constraint approach into the
field of solar HXR spectrum analysis, together with various other new
features (physical, mathematical and numerical) yielding a more effec-
tive algorithm, based on Generalized Singular Value Decomposition,
for determination of F(E). More precisely, in this paper we will discuss
the three major problems concerning the application of a regularization
approach to the analysis of HXR data, that is: how to effectively in-
troduce physically meaningful constraints into the inversion procedure;
how to tune the stability requirement avoiding artificial clustering in
the residuals, and, finally, how to adapt the regularization techniques
to solar data characterized by huge dynamical ranges.

The plan of the paper is as follows. In §2 we review the mathematical
formulation of the problem pointing out its numerical instability. In
83 we discuss the relation between regularization and physical con-
straints, while in §4 we describe the regularization and the computa-
tional method based on the Generalized Singular Value Decomposition.
In §5 a solution is proposed, through analysis of the cumulative resid-
uals, to the crucial problem of optimal choice of the regularization
parameter which controls the trade off between stability and loss of
information. In §6 we perform an analysis of the solution structure.
Finally, in §7 we present some applications in the case of simulated
photon spectra to demonstrate the improvements achievable and the
summary is presented in §8.
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In a subsequent paper (Kontar et al, 2004 (hearafter Paper II)) we
will apply this approach to real spectra observed with RHESSI (Lin et
al, 2002).

2. Mathematical formulation

Equation (1) is a Volterra integral equation of the first kind and can
be expressed in terms of a linear integral operator A : X — Y,

(AF)(e) = Flm v / “F(E)Q(c, E) dE, (2)

where X and Y are two appropriate functional (Hilbert) spaces. For
physical forms of the bremsstrahlung cross-section @), A is a compact
linear operator so that (Bertero et al, 1985) every discretization of
equation (2) is characterized by (significant) numerical instabilities.
Let us, then, consider some convenient discretized form of (1), viz. the
linear system

AF =g (3)

where

nVv . .
Ay = s Qe + )2 (B + B))/2)0E; =1 N j=1,...,M(> N){4)

F = (F(E1),....,F(EMm)), g8 = (9(e1),...,9(en)), with M > N, and
the dE; and d¢; are appropriate weights. The values g(¢;) correspond
to a set of discrete photon counts in energy bands ¢; — €; + d¢;, while
the F(E;) are the corresponding values of the mean electron flux in
energy bands E; — FE; + 0F;. We use a matrix A corresponding to
the bremsstrahlung cross-section due to Haug (1997) with the Elwert
(1939) Coulomb correction applied?.

It is important to recognize that, since electrons of all energies F > €
contribute to the photon emission at energy e, in general the hard X-ray
spectrum over a finite range [€1, €x] of photon energies contains infor-
mation on the electron spectrum over a much wider range, in particular
within the range ey < E < E); above the uppermost photon energy.
For example, if F(E) has an upper energy cutoff at F = Eya.x > ey,
then this cutoff will affect the observed photon spectrum below ey,
since the photon spectrum must tend to zero at € — FEy .. Hence, by

2 Note that the Elwert correction is not applicable for the high-frequency limit,
e ~ F. However, since photons of energy € are produced, in general, by a wide range
of electron energies F, the neglect of a more sophisticated form of the cross-section
in this very narrow energy range does not significantly affect our results.
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extending our array of E values to a sufficiently high value, the solution
of (3) can potentially reveal evidence of an upper energy cutoff (see §7
below).

Since M > N, problem (3) is underdetermined, i.e., there is no
unique solution of the linear system. The same holds true if we consider
the least-squares problem

IAF —g|* = min (5)

where || - || is the canonical Euclidean norm defined by

1= ([ pwa) ©)

min

The solutions of (5) are commonly known as pseudosolutions (Bertero
et al, 1985). Obviously, additional constraints need to be applied to
obtain a unique solution.

3. Physical constraints and Regularization

As a physical quantity F must satisfy various physical conditions
such as F > 0 and any known constraints such as properties which are
to be conserved or to be minimised/maximised. Many such properties
can be expressed, for a suitable closed operator L, in the form

|LF|| < const (7)

leading to the need to solve least square problem (5) subject to addi-
tional constraint (7). This constrained minimum problem can be solved
using the Lagrange multiplier method, namely

L(F) = |AF - g||® + \||LF||? = min (8)

where A\ is a Lagrange multiplier. This approach to regularize the
problem is known as Tikhonov regularization (Tikhonov, 1963).
Three possible different choices for L are discussed in the following.
As a first example, we observe that the density-weighted target-
averaged energy-integrated flux of electrons is given by the Euclidean
norm ||F||. Physically, this quantity must be fixed by the total flux
(the function of the total number of electrons or energy), a requirement
that can be met by a suitable choice of the second (constraint) term
in equation (8), the simplest choice being |F|| or L = 1, the identity
matrix so that the second term of equation (8) is just the Euclidean
norm of the solution F. Problem (8) with this constraint operator is also
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termed zero order regularization and was used by Piana et al. (2003)
for solar data. It defines the non-parametric F/(E) of target-averaged
total electron flux consistent with the data for a given parameter A to
be chosen via some appropriate additional condition.

The source averaged electron flux F(E) physically results from a
combination of the injected electron flux Fy(Ep) spectrum and the
physics of particle transport in the radiating source. Under a broad, but
not comprehensive range of conditions, these flux spectra are related
by (Brown & McKinnon, 1985)

1
"~ |dE/dN)|

[e.e]
F(E) [ REdE (9)
where dE/dN is the rate of energy loss per unit column density . For

example, for collisional energy losses in a cold target, dE/dN ~ —1/E
and therefore (Brown and Emslie, 1988)

Fo(Ep) ~ ——- [F(EE)] . (10)

E=Ey
Equation (10) shows that, if the purpose of finding a solution F(E)
is to subsequently use that solution to infer the injected electron flux
spectrum Fy(Ep), then the mean electron flux should be differentiable,
a requirement which can be incorporated in (8) by adopting for L the
differentiation operator L ~ D! which is termed first order requlariza-
tion.

Physically, if the electron acceleration can be described determin-
istically, e.g. the injection function resulted from acceleration can be
presented similar to an integral (9) with systematic acceleration instead
of deceleration, then the injected spectrum should be a differential func-
tion. For example, acceleration by an electric field leads to differentiable
spectrum of accelerated (injected) electrons. If we believe the injection
function is differentiable, then F'(E) should not only be differentiable,
but have a differentiable first derivative. This corresponds to the re-
quirement of a bounded second order derivative, hence to second order
reqularization L ~ D2,

It is informative to consider the effect of applying regularization
methods of very high order, since they can obscure physical features
in F(E) that do not comply with the imposed smoothness constraint.
The k-order derivative D®)F cannot be defined over less than k points,
which reduces the dimension of the solution space to N — k for N
data points. This makes higher order solutions more restrictive and
potentially less precise though in practice the high resolution data
now available have such large N ~ 300 that this is not an issue for
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any reasonable order of regularization. However in the case of forward-
fitting procedures, the natural N ~ 300 dimensional space of possible
solutions is forcefully squeezed into the space of only a few dimensions
( 5 in the case of power-law + isothermal components - Holman et al,
2003) which corresponds to very high order regularization and hence is
very restrictive.

4. Regularized solution and Generalized Singular Value
Decomposition

Provided that the null spaces of the matrices A and L intersect trivially
(iie. AF = 0 and LF = 0 have no common solutions other than
F = 0), the formal solution of the minimum problem can be shown
to be (Hansen, 1992)

F,=(A*A + \L*L)'A* . (11)

where A* is adjoint of an operator A. From the point of view of applica-
tions, this formula is not helpful since truncation errors imply a notable
loss of information in forming the cross-product matrix A*A and,
furthermore, the computational effort required is significant. Computa-
tional heaviness, together with the presence of local minima, affect also
the use of quadratic programming for convex functional minimization,
which is a typical strategy for computing the solution of (8). A more
effective approach is to use Generalized Singular Value Decomposition
(GSVD) algorithm. Following van Loan (1976), we consider an M x N
matrix A and a P x N matrix L (M > N > P). Then for each pair of
real matrices (A,L)

A e RMXN 1, e RPXV, (12)

it can be shown that there exists a set of singular values a,?, alf satis-

fying the relation (a,’;‘)Q + (oF)? = 1, and singular vectors Uy, Vi, Wg,
where the first two sets are orthogonal and the third one is a set of
linearly independent vectors satisfying the simultaneous equations

. diag(a?), 0\ 3 ~
A=U|0 1y_p | Wl L =V(diag(c?) 0)W~L. (13)
0 0

Here the M x M matrix U is formed from the M column vectors
ug, k=1,..., M, with similar definitions for the P x P matrix V and
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the N x N matrix W. The generalized singular values are defined as
the ratios o), = of}/of.

The solution to this generalized minimization problem (8) can be
shown to be (Hansen 1992)

P 2 ~ N

- o2 (g ) . .

F/\ = Z ( 3 k A ) Wi + Z (g . uk)wk- (14)
S \%ktA oy k=P+1

In the particular case when L = 1 (zero-order regularization), P = N
and Equation (13) shows that @ = ug, vy = vi. Hence the second
term in the solution (14) vanishes identically and the first term reduces
to the one for the zero-order regularized solution.

5. Choice of the Regularization Parameter

It has to be recalled that the choice of the regularization parameter A,
and indeed of L, has to be made independently of the equation and of
the data, using prior knowledge or prejudice, since there is no unique
solution to the equation (5) itself. As mentioned, the integral properties
of the electron flux (7), if they were known, would unambiguously deter-
mine the Lagrange multiplier A in our problem (8). Unfortunately, we
do not know a priori the total flux of X-ray producing electrons or other
integral quantity. Therefore it is advantageous to use knowledge of the
errors in the recovered solution to choose the regularization parameter.
Several criteria for determining the optimal A in Equation (14) have
been introduced. A general property of them is that the optimal A tends
to zero when the noise level tends to zero. For example, according to
the discrepancy principle (Tikhonov et al, 1995), the best value of A is
given by the solution of the equation

IAF - gl* = [|ogl*, (15)

where dg is some measure of the noise affecting the data (essentially,
typically the canonical norm of the error vector). The discrepancy
principle is typically rather robust in that it yields stable values but
empirical tests show that the parameter it provides is often too large,
and the corresponding regularized solution oversmoothed.

Here we propose a procedure for the choice of the regularization
parameter based on the analysis of the residuals 7, = ((AF),—gx)/0gk-
Then the deviation weighted by the error

I(AF, — g)(0g) " [* ~ 1 (16)
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Generalized regularization for solar bremsstrahlung X-ray spectra 9

accounts more accurately for point-to-point error variation than (15).
Indeed, A defined by Equation (16) has accounted for detailed structure
of errors, while the discrepancy principle uses only total error.

Ideally, the normalized residuals should be consistent with statis-
tical deviations in the data, and should therefore form a gaussian
distribution with zero mean; the cumulative normalized residual

J
Z Tk (17)
k=1

should be mostly within +£1/4/7. A too-small set of values for the cumu-
lative residuals indicates insufficient smoothing, whereas a set of values
that consistently exceed +1/4/7 (especially if the sign of the residuals
cluster) indicates too great a regularizing parameter. Therefore, we
start with the value of A given by (16) and then reduce A until the
average residual in the photon spectrum over the energy range from
€1 to €; as a function of j is mostly within the £o limits expected if
the residuals were purely statistical, drawn from a normal distribution.
This technique is similar to requiring x?> ~ 1 in hypothesis testing
situations.

Cj=-

6. Analysis of the solution structure

A key issue in achieving the most meaningful construction of a regu-
larized solution lies in analysis of the quantities

(01)® (g-up)
(k) + A off

k=1,...,N (18)

i.e., the absolute value of the coefficients which multiply the singular
vectors vy, in the solution (14). To obtain a meaningful solution repre-
sented by Equation (14) the singular values o}, should decrease faster
on average than the coefficients (g, uy) (the Picard condition; Groetsch
1984). Figure 1 shows a typical behaviour of the coefficients c¢.

The first singular vector is always either positive or negative definite
(so that c;w; is always positive), while the wy always have oscillatory
behavior for k > 1. Therefore, for sufficiently small regularization pa-
rameters A, the regularized solution may exhibit negative values when
the coeflicients ¢, are not decreasing fast enough, so that relatively large
values of the regularization parameter \ are necessary to guarantee a
positive definite solution.

Inasmuch as typical solar flare hard X-ray spectra are sufficiently
steep, it is advantageous to transform the fundamental problem (1)
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(or, equivalently, [8]) to a form in which the ¢ are decreasing faster
with k, so that smaller values of A, which preserve more fidelity in the
recovered solution, can be used. This will also avoid errors connected
with finite precision arithmetics in machine calculations.

Two strategies can be followed to overcome this difficulty. In the
first one, instead of considering equation (3) we consider the new linear
system

ASF = ig (19)

with S B
OF=F—-F,; dg=g— AF,, (20)

where F, is an adopted form (often, but not necessarily, a closed para-
metric expression) for F. Now dg represents the deviations from the
reference spectrum. Hence, if this reference spectrum is chosen appro-
priately (say from a forward-fit solution — e.g., Holman et al. 2003),
then these deviations dF vary around zero, and the function dg will
be significantly flatter than g, so that the behavior of the ¢ becomes
more monotonic.

In addition to facilitating the calculation of a smooth (but not un-
necessarily oversmoothed) solution of the minimization problem, the
quantity 6F is interesting in its own right. It represents the devia-
tion of the actual electron spectrum F(E) from the assumed reference
spectrum F,(E) and hence is an “adjustment” to this assumed (e.g.,
forward-fitted) form. This ”initial guess” approach is the one adopted
in the present paper.

A second possible strategy to constrain the behaviour of the ¢ is to
consider the change of variables

EP

gle) — e glei); F(E;) — EJF(E;); Ay — E%, Aij, (21)
J

with p, ¢ positive real numbers. Then the basic form of the solution (14)
is unaltered, but the forms of the matrix and its associated singular sys-
tem are altered which leads to modified behavior of the coefficients ¢y, If
a scaling (21) can be found that makes the ¢, decreasing functions of k,
then this transformed solution will have more desirable properties. We
have found through experimentation that a judicious choice of scaling
isp=q=(y—1)/2, where v is the best-fit power-law spectral index to
the array of g values. For all values of v (from 2 to & 20), this scaling
drives the coefficients c¢; toward a rapidly decreasing form. Note that
while re-scaling with p = v produces a much flatter data function g,
such a steeper scaling concomitantly leads (equation [21]) to the matrix
A becoming less diagonal, thereby increasing the ill-conditioning of
the system and hence the rate of decay of the o; with k. The choice
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p = (v —1)/2 hence lies at the “middle ground” between steepness of
the input data vector and ill-conditioning of the transformation matrix;
similar arguments apply to the choice of q.

It should also be noted that “rescaling” is equivalent to constructing
the ratio (rather than the difference) of F(E) relative to a reference
F.(F) form.

7. Application of the Algorithm to Simulated Data

In this section we explore the application of the above techniques to
simulated data, in order to demonstrate some of the effects of various
features.

7.1. NON-SQUARE MATRIX

To demonstrate the benefits of using a non-square A extending to
higher electron energies than the highest observed photon energy, we
assumed an actual F(E) of the form F(E) ~ E7,10 < E < Enax,
with 6 = 2 and Enax = (300,400,500) keV. We then used Equa-
tion (1) and the electron-proton bremsstrahlung cross-section from
Haug (1997) to calculate the photon spectrum I(e), in the range 10 <
e < 200 keV, from each electron spectrum. (It should be noted that
the upper limit to the “observed” photon spectrum is in all cases less
than the upper-energy cutoff in the electron spectrum.) Figure 2 shows
the calculated photon spectra and the corresponding local spectral
index v = —dlogI(e)/dloge. At low energies, the spectrum is well
represented by a power-law form with v = § + 1 = 3, but even at
energies as low as ~ 50 keV, the deviation from a power-law behavior
induced by the upper-energy cutoff in F(E) is already evident. For the
case Fax = 300 keV | by € = 100 keV the spectrum has steepened
from its low-energy form (~ €¢~3) sufficiently that the spectral index
has increased by as much as 0.5.

Such a deviation in local hard X-ray spectral index  is clear ev-
idence for a significant deviation from the power-law behavior of the
generating F'(E) spectrum at higher energies, although the exact nature
of this high-energy deviation is not immediately obvious from the form
of the photon spectrum (or even from a [e] plot). We therefore now
explore the ability of our technique to uncover the actual nature of this
deviation (namely, in this case the upper energy cutoff at £ = Epax).
We performed a regularized inversion of the photon spectra of Fig-
ure 2 by using solution (14) under the following conditions: zero order
regularization; the simulated photon “data” used covered the range
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10 < € < 200 keV and the electron upper energy limits Eypper used in
the inversion were 400, 500, and 600 keV.

In all cases the recovered electron spectra quite faithfully reproduce
the actual high-energy cutoffs Fyax = 300 keV (Figure 3). The higher
energy cut-off is seen as substantial steepening in the reconstructed
spectra. However, we should note somewhat obvious limitations: if the
true spectra has some variations above the range we are given, the
reconstructed solution does not display this features due to the lack of
information given (Figure 4).

7.2. HIGHER ORDER REGULARIZATION WITH GSVD

To illustrate the benefits of GSVD and higher order regularization
we consider the reconstruction of an electron spectrum which is the
superposition of a power-law plus an oscillatory trigonometric function.
In this case, the use of a first order penalty term governed by L ~ D!
is more effective than the zero-order regularization algorithm, since
the bound on the first derivative of the regularized solution assures a
sufficiently correct behaviour (in terms of residuals) of the solution. In
Figure 4 (upper panel) the simulated photon spectrum is obtained by
inserting the theoretical electron spectrum into equation (3) while Fig-
ure 4 (lower panel) shows the reconstruction obtained by using formula
(14) when L ~ D! and X is chosen by using the cumulative residuals
analysis criterion (in this figure we also superimposed the theoretical
electron spectrum in order to point out the reliability of our approach).
In Figure 5(upper panel) and Figure 5(lower panel) the behaviour of the
normalized and cumulative residuals shows that the fitting performance
of the regularized solution is extremely accurate in the range below 150
keV.

The importance of higher order regularization using GSVD also
becomes explicit when one wants to derive the injected electron dis-
tribution Fy(Ep). Figure (6) shows both the mean source and injected
electron spectra obtained using different orders of regularization, com-
pared with their true forms. As a true form of Fy(Ep) we took a
power-law with a bump simulated by exponent as can be seen in Fig-
ure (6). The simulated photon spectrum is obtained by inserting the
theoretical electron spectrum with the high energy cut-off at 300 keV
into equation (3) and 5% noise has been added. The reconstructed
spectra and input spectra are shown in the Figure (6). Note, that in
the reconstruction we used data only up to 150 keV.

The second order regularized solution shows the closest solution
for Fy(Ep) in equation (6). On the other hand first and zero order
regularizations show results with smaller x? in recovering the spatially
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integrated spectra (6). Indeed, second and first order regularization
preserves information on small scale (closer reproduction of a hump
in Fy(Ep) around 30 keV), while zero order regularization is better in
global properties of the solution. The first and zero order regularization
show lack of sufficient smoothness that is displayed in oscillations in
Fy(Eop) (6). The main deviations from the true solutions are observed
above 200 keV, where we have only approximate solution and near low
energy cut-off due to boundary effects.

8. Conclusions

In the paper, we have summarized the essential mathematics associ-
ated with application of an Generalized Singular Value Decomposition
(GSVD) technique to the solution of Volterra integral equations arising
in solar X-ray spectroscopy, and in particular to the inference of mean
source electron spectra F(E) and injected (accelerated) electron spec-
trum Fy(FEy) from observations of solar flare hard X-ray spectra I(e).
Judicious use of this methodology can recover forms of F(F) that are
not only relatively free from the effects of data noise amplification,
but which also recover features that are not realizable using more
traditional (e.g., forward-fitting) methods. Further, they can reveal
approximate behaviour in the electron spectrum well above the range
of photon energies observed.

In the companion paper (Paper II) we will make use of these tech-
niques in the analysis of high-resolution solar flare spectra observed by

RHESSI.
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Picard Condition

1 10 100
Singular Value number

Figure 1. Variation of the coefficients ¢j in Equation (18) as a function of the vector
number k for the simulated data set with § = 2.
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Figure 2. Upper panel: Simulated mean source electron spectra F(E), which has the
form of a power-law (index § = 2), with three different upper energy cutoffs Emax.
Middle panel: Corresponding photon spectra I(e) for each of the F(E) forms. Lower
panel: Local spectral index v = dlog I(€)/dlog e for each photon spectrum. Note the
evidence for the high-energy cutoff in the hard X-ray spectrum and its local spectral
index at much lower energies than Enax. The vertical lines at ¢ = 200 keV represent
the upper energy limit of the spectral data used for subsequent analysis.
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Figure 8. Mean source electron spectra F'(E) recovered from the photon spectrum
I(€; Emax = 300 keV) (dot-dashed spectrum in Figure 2), using the GSVD technique
and zero order regularization with photon “data” in the range 10 < ¢ < 150 keV and
electron energy ranges 10 keV < E < Eupper, where Eyupper = 400 keV (dot-dashed
curve), 500 keV (dashed curve) and 600 keV (dotted curve). The reference spectrum
(Equation [20]) was of the form F,(E) ~ E". Note that the high-energy behavior
of F(E) (in particular the high-energy cutoff at Emax = 300 keV) is quite faithfully
reproduced.
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Figure 4. Reconstruction from simulated data: upper panel: the simulated photon
spectrum; bottom panel: the reconstruction obtained by using first order regular-
ization. The dash line shows the input electron spectrum and solid lines presents 30
realizations of the solution with the data randomly perturbed within error bars.

h1840e.tex; 27/09/2004; 17:28; p.17



18 Kontar et al.

0.5 =

Normilised residuals

-0.5 —

10 100
Energy,keV

0.015

0.010

0.005

0.000

Cumulative residuals

—0.005

-0.010

o

100
Energy,keV

Figure 5. Reconstruction from simulated data: upper panel: normalized residuals;
bottom panel: normalized cumulative residuals
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Figure 6. Reconstruction from simulated data. Recovered mean flux F(E)(upper
panel) and recovered injected flux Fy(Fo) (lower panel) given by equation (10). The
dotted lines shows the true solution, while three various orders of regularization are
shown: second order regularization (solid line), first order (dash line), zero (dash
dot).
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