

Simulations of Langmuir wave generation in the inhomogeneous plasma of the solar wind

Hamish A. S. Reid Eduard P. Kontar University of Glasgow

22/06/2010

Solar energetic electrons are observed as a broken powerlaw distribution at the Earth with lower energies having a flatter power law index than higher energies.

Lin et al 1982

Broken power-law is caused by the density gradient of the background plasma taking plasma waves out of resonance with the electron beam (Kontar & Reid 2009)

Krucker et al, 2009

22/06/2010

Initial Conditions

The initial electron beam (at time=0) is dependent on position (as a Gaussian) and velocity (as a power-law)

$$f(v, x, t = 0) = g_0(v) \exp\left(\frac{-x^2}{d^2}\right)$$

$$g_o(v) = \frac{(\alpha - 1)n_{beam}}{v_{\min}} \frac{v_{\min}^{\alpha}}{v^{\alpha}} \qquad v_{\min} \le v \le v_o$$

The initial, thermal spectral energy density is:

$$W(v, x, t) = \frac{k_b T_e}{4\pi^2} \frac{\omega_{pe}^2}{v^2} \log\left(\frac{v}{v_t}\right)$$

22/06/2010

One dimensional quasilinear equations (e.g. Drummond and Pines, 1962) describing the kinetics of energetic electrons and Langmuir waves (Kontar, 2001) (Reid and Kontar 2010 submitted)

Density Fluctuations

The solar wind turbulence takes the form of a Kolmogorov 5/3 power-law below a certain frequency

We take this power spectra and directly enter its properties into the code for a background density with multiple fluctuations.

Celnikier et al, 1987

Change the density fluctuations to a power density spectra more realistic to the solar wind.

$$\delta n(x) = \langle n(x) \rangle C \sum_{n=1}^{N} \lambda_n^{\beta/2} \sin(2\pi x / \lambda_n + \phi_n)$$

C =

The constant C is normalised to the value of <δn(x)> near the Earth (Celnikier et al 1987)

$$= \sqrt{\frac{2\langle \delta n(x)^2 \rangle}{\langle n(x) \rangle^2 \sum_{i=1}^N \lambda_n^\beta}}$$

Density fluctuations close to the Sun are able to be less prolific than density fluctuations close to the Earth.

$$\frac{\left\langle \delta n(x_1)^2 \right\rangle}{\left\langle n(x_1) \right\rangle^2} = \left(\frac{n(1AU)}{n(x_2)} \right)^{\psi} \frac{\left\langle \delta n(x_2)^2 \right\rangle}{\left\langle n(x_2) \right\rangle^2}$$

 $\psi > 0$

Fluence and Peak Flux spectra at 1.2AU

Larger powers of density fluctuations cause the spectral index below the break energy to be higher

22/06/2010

Larger intensities of turbulence cause the electron beam to relax less at low energies resulting in a increased spectral index below the break energy.

Conclusion

- The structure of the background plasma affects the spatial build up of plasma waves induced by the electron beam.
- Multiple small scale fluctuations are able to reproduce the burst nature of plasma waves observed in-situ
- Different levels of turbulence will cause more or less relaxation of the electron beam due to the production of plasma waves.