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Sub-THz emission mechanisms
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The main observational §
characteristics: - ABGHz
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srelatively large radiation peak flux of
the order of 104 sfu (Kaufmann et al.
2004);

sradiation spectrum rising with
frequency F(f ) cc fo;

sspectral index varying with time
within & ~ 1-6;

*sub-THz component can display a
sub-second time variability with the
modulation about 5% (Kaufmann et
al. 2009);

» the source size is believed to be - C
less than 20" (however, it is indirect ot
conclusion) (see also Luthi et al. CoAmmaH A N LA
20044a, 2004b for large source
indications)
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We consider a more complete list of emission mechanisms, capable of
producing a sub-THz component, both well known and new in this
context, and calculate a representative set of their spectra produced

by:

(1) free-free emission;

(2) Gyrosynchrotron emission,;

(3) Synchrotron emission from relativistic positrons/electrons;
(4) Diffusive radiation;

(5) Cherenkov emission;
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(1) Free-free emission

A rising spectrum from a compact (20”) source requires that the source is relatively
dense (n,~10 cm=3)and hot (T, ~10 MK).
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Thermal free-free radio spectra produced from a uniform cubic source with a linear
size of 20” for n,= 10! to 4 x 102 cm=3 and T, = 0.5-5 MK.

Note, that from the observations we can exclude the option of a source that is both dense
and hot , say n, ~ 10> cm=3and T, ~ 10 MK, EM = n_2V ~ 3 x 10°lcm™3.




' Umver51ty
of Glasgow

(2) Free-free emission

Temporal pulsations of the free-free emission could be MHD oscillations (e.g. sausage
mode) of the corresponding magnetic loop is an attractive scenario (e.g., Fleishman et al.
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2008).
Sizes: The flux density above the I——— :
1000 sfu level requires the oo ;

T 20-30 keV
thermal electron number density = 40F
above 102 cm- or/and the linear % soof
size of the source above 20". g 600}
While the observations (Kontar et =~ ¢
al, 2008) suggest that electrons 2“3; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
deposit their energy in the 2500 3000 3500 4000 4500 5000
chromosphere at the heights 108 7 T et T
cm with relatively high density. T s e Rl ”0;
Therefore, a flare heated 1200 f00f
chromosphere could contain £ 1000% g ok
small (>27) free-free emitting 5 EEE g
regions with very high density e R
1013-10% cm-3 with temperatures 20k ] =
from 104 K Up to afew 105 K. 10% 10 10" 10® 10" 107 10" EO:'mm -990  -980 9?0 gel::u -9:50

Number density, cm® X (arcsecs)
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(a) Radio spectra produced by GS plus free—free contributions from a uniform
source with a size of 1 for n, = 8 x 10?2 cm=3 and B = 800—4400 G.

(b) Razin-suppressed GS spectra with the Razin frequency 200 GHz plus the
free—free component.
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Time variability: Due to electrons flux variations (?)

Size: Footpoint size or less (An increase of the source size above 2" with the
same total number of fast electrons, magnetic field, and thermal electron
density results in a spectrum totally dominated by the free—free contribution)
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Radio spectra produced by synchrotron radiation from relativistic positron pl us

free—free contribution from a uniform cubic source with a linear size of 20 for the
total instantaneous positron number N, =5 x 102° to 5 x 103!, with energy y = 20
(~10 MeV), magnetic field B = 1000 G, the thermal electron density n, = 4 x 1010
cm=3(a) and n, =4 x 10t cm=3 (b), and T, = 1 MK.
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Time variability: Due to the positron flux variations (?)

Size: footpoints of a flaring loop (~2-7") or in a moderate-size
(<20) coronal flaring loop
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Diffusive Radiation produced by relativistic electrons/positrons in long-
wave Langmuir turbulence A>2mc/w,,. (a) Dependency on Langmuir wave
energy density. (b) The spectra for different Lorentz factors.
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Time variability: Turbulence variations, electron/positron flux variations

Size: footpoints of a flaring loop (~2-7") or in a moderate-size (<20”)
coronal flaring loop




(5) Cherenkov radiation
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(a) Model of plasma dielectric permittivity with molecular line contribution included,;

(b) Vavilov—Cherenkov radiation produced by fast electrons with a power-law
distribution over the velocity—blue (dash-dotted) and green (dashed) curves; the red
(solid) curve is for g(w) = 1 + w?/w,?, i.e., without standard plasma contribution.

(b)
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Time variability: electron flux variations

Size: chromospheric footpoints of a flaring loop (~2-7")
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Sub-THz emission mechanisms

Em|SS|on Flux, sfu | Spec. Time Size, arcsec | Advantages Disadvantages

mechanism index variations, s

Free-free ~< 104 | 0-2* >1 > 20 Explains flux before | no strong compact
the flares, large source possible

scale sources

Gyrosynchrotron | ~< 104 | < 37 >0.1 1-2 Flux variations as Fields B>4000G,

in HXR spectral index

Synchroton from | < 104 | 1/3T* | >0.1 arbitrary Correlation Number of

positrons with gamma-lines | positrons

DRL ~<10%4 | < 2t >0.01 arbitrary Flux variations Strong level of
Langmuir waves

Cherenkov ~<106 |arbitrary | >0.1 <10 Large flux values Uknown
emission chromospheric
permitivity

Observations | ~>104 |1..6 | 0.1-100 |<20-60

T -line-of-sight absorption can steepen the spectrum, but will decrease the flux
* - free-free absorption in the source can make spectral index ~<2, but will reduce the flux




