

Sub-THz emission processes in solar flares

Gregory Fleishman and Eduard Kontar

NJIT, USA University of Glasgow, UK

Meudon-Glasgow workshop, May 2010

Sub-THz emission mechanisms

The main observational characteristics:

•relatively large radiation peak flux of the order of 10⁴ sfu (Kaufmann et al. 2004);

•radiation spectrum rising with frequency $F(f) \propto f^{\sigma}$;

•spectral index varying with time within $\delta \sim 1-6$;

•sub-THz component can display a sub-second time variability with the modulation about 5% (Kaufmann et al. 2009);

the source size is believed to be less than 20" (however, it is indirect conclusion) (see also Luthi et al. 2004a, 2004b for large source indications)

We consider a more complete list of emission mechanisms, capable of producing a sub-THz component, both well known and new in this context, and calculate a representative set of their spectra produced by:

- (1) free-free emission;
- (2) Gyrosynchrotron emission;
- (3) Synchrotron emission from relativistic positrons/electrons;
- (4) Diffusive radiation;
- (5) Cherenkov emission;

A rising spectrum from a compact (20") source requires that the source is relatively dense ($n_e \sim 10^{11} \text{ cm}^{-3}$) and hot ($T_e \sim 10 \text{ MK}$).

Thermal free-free radio spectra produced from a uniform cubic source with a linear size of 20" for $n_e = 10^{11}$ to 4 × 10¹² cm⁻³ and $T_e = 0.5-5$ MK.

Note, that from the observations we can exclude the option of a source that is both dense and hot, say $n_e \sim 10^{12}$ cm⁻³ and $T_e \sim 10$ MK, EM = $n_e^2 V \sim 3 \times 10^{51}$ cm⁻³.

(2) Free-free emission

Temporal pulsations of the free-free emission could be MHD oscillations (e.g. sausage mode) of the corresponding magnetic loop is an attractive scenario (e.g., *Fleishman et al. 2008*).

Sizes: The flux density above the 1000 sfu level requires the thermal electron number density above 10¹² cm⁻³ or/and the linear size of the source above 20". While the observations (Kontar et al, 2008) suggest that electrons deposit their energy in the chromosphere at the heights 10⁸ cm with relatively high density. Therefore, a flare heated chromosphere could contain small (>2") free-free emitting regions with very high density 10¹³-10¹⁵ cm⁻³ with temperatures from 10^4 K up to a few 10^5 K.

(3) Gyrosynchrotron Emission

(a) Radio spectra produced by GS plus free–free contributions from a uniform source with a size of 1 for $n_e = 8 \times 10^{12}$ cm⁻³ and B = 800-4400 G. (b) Razin-suppressed GS spectra with the Razin frequency 200 GHz plus the free–free component.

Time variability: Due to electrons flux variations (?)

Size: Footpoint size or less (An increase of the source size above 2" with the same total number of fast electrons, magnetic field, and thermal electron density results in a spectrum totally dominated by the free–free contribution)

(3) Synchrotron emission from positrons

Radio spectra produced by **synchrotron radiation from relativistic positron plus** free-free contribution from a uniform cubic source with a linear size of 20" for the total instantaneous positron number $N_{e+} = 5 \times 10^{29}$ to 5×10^{31} , with energy $\gamma = 20$ (~10 MeV), magnetic field B = 1000 G, the thermal electron density $n_e = 4 \times 10^{10}$ cm⁻³ (a) and $n_e = 4 \times 10^{11}$ cm⁻³ (b), and $T_e = 1$ MK.

Time variability: Due to the positron flux variations (?)

Size: footpoints of a flaring loop (~2-7'') or in a moderate-size (<20'') coronal flaring loop

(4) Emission from Langmuir waves

Diffusive Radiation produced by relativistic electrons/positrons in longwave Langmuir turbulence $\lambda > 2\pi c/\omega_{pe}$. (a) Dependency on Langmuir wave energy density. (b) The spectra for different Lorentz factors.

Time variability: Turbulence variations, electron/positron flux variations

Size: footpoints of a flaring loop (~2-7") or in a moderate-size (<20") coronal flaring loop

(5) Cherenkov radiation

(a) Model of plasma dielectric permittivity with molecular line contribution included; (b) Vavilov–Cherenkov radiation produced by fast electrons with a power-law distribution over the velocity—blue (dash-dotted) and green (dashed) curves; the red (solid) curve is for $\varepsilon(\omega) = 1 + \omega^2/\omega_0^2$, i.e., without standard plasma contribution.

Time variability: electron flux variations

Size: chromospheric footpoints of a flaring loop (~2-7")

Sub-THz emission mechanisms

Emission mechanism	Flux, sfu	Spec. index	Time variations, s	Size, arcsec	Advantages	Disadvantages
Free-free	~< 10 ⁴	0-2*	>1	> 20	Explains flux before the flares, large scale sources	no strong compact source possible
Gyrosynchrotron	~< 10 ⁴	< 3†	>0.1	1-2	Flux variations as in HXR	Fields <i>B</i> >4000G, spectral index
Synchroton from positrons	~< 10 ⁴	1/3†*	>0.1	arbitrary	Correlation with <i>gamma</i> -lines	Number of positrons
DRL	~<104	< 2†	>0.01	arbitrary	Flux variations	Strong level of Langmuir waves
Cherenkov emission	~<10 ⁶	arbitrary	>0.1	<10	Large flux values	Uknown chromospheric permitivity
Observations	~>10 ⁴	16	0.1-100	<20-60		

†-line-of-sight absorption can steepen the spectrum, but will decrease the flux

* - free-free absorption in the source can make spectral index ~<2, but will reduce the flux